2022届四川省成都市天府七中学中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
2.下列运算正确的是( )
A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
3.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A.21.7米 B.22.4米 C.27.4米 D.28.8米
4.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为( )
A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm
5.下列计算正确的是( )
A.()2=±8 B.+=6 C.(﹣)0=0 D.(x﹣2y)﹣3=
6.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是( )
A.x(x+1)=210 B.x(x﹣1)=210
C.2x(x﹣1)=210 D.x(x﹣1)=210
7.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为( )
A.(4030,1) B.(4029,﹣1)
C.(4033,1) D.(4035,﹣1)
8.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B.
C. D.
9.小手盖住的点的坐标可能为( )
A. B. C. D.
10.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )
A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
11.如图,在数轴上有点O,A,B,C对应的数分别是0,a,b,c,AO=2,OB=1,BC=2,则下列结论正确的是( )
A. B. C. D.
12.一副直角三角板如图放置,其中,,,点F在CB的延长线上若,则等于( )
A.35° B.25° C.30° D.15°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:×(﹣2)=___________.
14.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.
15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.
16.计算的结果等于_____________.
17.21世纪纳米技术将被广泛应用.纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_______米.
18.如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称, CD⊥x轴于点D,△ABD的面积为8.
(1)求m,n的值;
(2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.
20.(6分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.
21.(6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.
22.(8分)为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?
23.(8分) (1)计算:
(2)先化简,再求值:,其中x是不等式的负整数解.
24.(10分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
(1)证明:∠C=∠D;
(2)若∠BEF=140°,求∠C的度数;
(3)若EF=2,tanB=3,求CE•CG的值.
25.(10分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
26.(12分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
(1)求抛物线C1的表达式;
(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.
27.(12分)填空并解答:
某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.
(1)问哪一位“新顾客”是第一个不需要排队的?
分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.
a1
a2
a3
a4
a5
a6
c1
c2
c3
c4
…
到达窗口时刻
0
0
0
0
0
0
1
6
11
16
…
服务开始时刻
0
2
4
6
8
10
12
14
16
18
…
每人服务时长
2
2
2
2
2
2
2
2
2
2
…
服务结束时刻
2
4
6
8
10
12
14
16
18
20
…
根据上述表格,则第 位,“新顾客”是第一个不需要排队的.
(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.
分析:第n个“新顾客”到达窗口时刻为 ,第(n﹣1)个“新顾客”服务结束的时刻为 .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
2、B
【解析】
根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
【详解】
A、a3+a3=2a3,故A错误;
B、a6÷a2=a4,故B正确;
C、a3•a5=a8,故C错误;
D、(a3)4=a12,故D错误.
故选:B.
【点睛】
此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
3、A
【解析】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题.
【详解】
作BM⊥ED交ED的延长线于M,CN⊥DM于N.
在Rt△CDN中,∵,设CN=4k,DN=3k,
∴CD=10,
∴(3k)2+(4k)2=100,
∴k=2,
∴CN=8,DN=6,
∵四边形BMNC是矩形,
∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,
在Rt△AEM中,tan24°=,
∴0.45=,
∴AB=21.7(米),
故选A.
【点睛】
本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
4、B
【解析】
【分析】由已知可证△ABO∽CDO,故 ,即.
【详解】由已知可得,△ABO∽CDO,
所以, ,
所以,,
所以,AB=5.4
故选B
【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质.
5、D
【解析】
各项中每项计算得到结果,即可作出判断.
【详解】
解:A.原式=8,错误;
B.原式=2+4,错误;
C.原式=1,错误;
D.原式=x6y﹣3= ,正确.
故选D.
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
6、B
【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;
则总共送出的图书为x(x−1);
又知实际互赠了210本图书,
则x(x−1)=210.
故选:B.
7、D
【解析】
根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.
【详解】
解:由题意可得,
点P1(1,1),点P2(3,-1),点P3(5,1),
∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,
即P2018的坐标为(4035,-1),
故选:D.
【点睛】
本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.
8、A
【解析】
分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.
详解:该几何体的左视图是:
故选A.
点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.
9、B
【解析】
根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.
【详解】
根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;
分析选项可得只有B符合.
故选:B.
【点睛】
此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).
10、C
【解析】
根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
【详解】
∵|a|>|c|>|b|,
∴点A到原点的距离最大,点C其次,点B最小,
又∵AB=BC,
∴原点O的位置是在点B、C之间且靠近点B的地方.
故选:C.
【点睛】
此题考查了实数与数轴,理解绝对值的定义是解题的关键.
11、C
【解析】
根据AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,进行判断即可解答.
【详解】
解:∵AO=2,OB=1,BC=2,
∴a=-2,b=1,c=3,
∴|a|≠|c|,ab<0,,,
故选:C.
【点睛】
此题考查有理数的大小比较以及绝对值,解题的关键结合数轴求解.
12、D
【解析】
直接利用三角板的特点,结合平行线的性质得出∠BDE=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故选D.
【点睛】
此题主要考查了平行线的性质,根据平行线的性质得出∠BDE的度数是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-1
【解析】
根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
【详解】
故答案为
【点睛】
本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.
14、2.
【解析】
设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an=2n﹣2”,再代入n=2029即可求出结论.
【详解】
设第n层有an个三角形(n为正整数),
∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,
∴an=2(n﹣2)+2=2n﹣2.
∴当n=2029时,a2029=2×2029﹣2=2.
故答案为2.
【点睛】
本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an=2n﹣2”是解题的关键.
15、①②③④ .
【解析】
由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;
证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;
由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;
证出△ACD∽△FEQ,得出对应边成比例,得出④正确.
【详解】
解:∵四边形ADEF为正方形,
∴∠FAD=90°,AD=AF=EF,
∴∠CAD+∠FAG=90°,
∵FG⊥CA,
∴∠GAF+∠AFG=90°,
∴∠CAD=∠AFG,
在△FGA和△ACD中,
,
∴△FGA≌△ACD(AAS),
∴AC=FG,①正确;
∵BC=AC,
∴FG=BC,
∵∠ACB=90°,FG⊥CA,
∴FG∥BC,
∴四边形CBFG是矩形,
∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;
∵CA=CB,∠C=∠CBF=90°,
∴∠ABC=∠ABF=45°,③正确;
∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,
∴△ACD∽△FEQ,
∴AC:AD=FE:FQ,
∴AD•FE=AD2=FQ•AC,④正确;
故答案为①②③④.
【点睛】
本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.
16、a3
【解析】
试题解析:x5÷x2=x3.
考点:同底数幂的除法.
17、1.2×10﹣1.
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:12纳米=12×0.000000001米=1.2×10−1米.
故答案为1.2×10−1.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
18、1
【解析】
根据题意可以发现题目中各点的坐标变化规律,从而可以解答本题.
【详解】
解:由题意可得,
A1(1,-),A2(1,1),A3(-2,1),A4(-2,-2),A5(4,-2),…,
∵2018÷4=504…2,2018÷2=1009,
∴点A2018的横坐标为:1,
故答案为1.
【点睛】
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)m=8,n=-2;(2) 点F的坐标为,
【解析】
分析:(1)利用三角形的面积公式构建方程求出n,再利用 待定系数法求出m的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b与x轴,y轴的交点分别为, . ②图中,当k>0时,设直线y=kx+b与x轴,y轴的交点分别为点,.
详解:(1)如图②
∵ 点A的坐标为,点C与点A关于原点O对称,
∴ 点C的坐标为.
∵ AB⊥x轴于点B,CD⊥x轴于点D,
∴ B,D两点的坐标分别为,.
∵ △ABD的面积为8,,
∴ .
解得 . ∵ 函数()的图象经过点,
∴ .
(2)由(1)得点C的坐标为.
① 如图,当时,设直线与x轴,
y轴的交点分别为点,.
由 CD⊥x轴于点D可得CD∥.
∴ △CD∽△ O.
∴ .
∵ ,
∴ .
∴ .
∴ 点的坐标为.
②如图,当时,设直线与x轴,y轴的交点分别为
点,.
同理可得CD∥,.
∵ ,
∴ 为线段的中点,.
∴ .
∴ 点的坐标为.
综上所述,点F的坐标为,.
点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.
20、证明见解析
【解析】
分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.
详解:证明:在▱ABCD中,,
,又 ,≌,
,,又,
四边形AGCH为平行四边形, .
点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.
21、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).
【解析】
试题分析:利用关于点对称的性质得出的坐标进而得出答案;
利用关于原点位似图形的性质得出对应点位置进而得出答案.
试题解析:(1)△A1BC1如图所示.
(2)△A2B2C2如图所示,点C2的坐标为(-6,4).
22、1平方米
【解析】
设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.
【详解】
解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,
根据题意得:﹣=11,
解得:x=500,
经检验,x=500是原方程的解,
∴1.2x=1.
答:实际平均每天施工1平方米.
【点睛】
考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.
23、(1)5;(2),3.
【解析】
试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;
(2)先化简,再求得x的值,代入计算即可.
试题解析:
(1)原式=1-2+1×2+4=5;
(2)原式=×=,
当3x+7>1,即 x>-2时的负整数时,(x=-1)时,原式==3..
24、(1)见解析;(2)70°;(3)1.
【解析】
(1)先根据等边对等角得出∠B=∠D,即可得出结论;
(2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
【详解】
(1)∵AB=AD,
∴∠B=∠D,
∵∠B=∠C,
∴∠C=∠D;
(2)∵四边形ABEF是圆内接四边形,
∴∠DFE=∠B,
由(1)知,∠B=∠D,
∴∠D=∠DFE,
∵∠BEF=140°=∠D+∠DFE=2∠D,
∴∠D=70°,
由(1)知,∠C=∠D,
∴∠C=70°;
(3)如图,由(2)知,∠D=∠DFE,
∴EF=DE,
连接AE,OC,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE=DE,
∴BE=EF=2,
在Rt△ABE中,tanB==3,
∴AE=3BE=6,根据勾股定理得,AB=,
∴OA=OC=AB=,
∵点C是 的中点,
∴ ,
∴∠AOC=90°,
∴AC=OA=2,
∵,
∴∠CAG=∠CEA,
∵∠ACG=∠ECA,
∴△ACG∽△ECA,
∴,
∴CE•CG=AC2=1.
【点睛】
本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
25、(1)证明见解析(2)4-3
【解析】
试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
∵△EAC是等边三角形, EO是AC边上中线,
∴EO⊥AC,即BD⊥AC,
∴平行四边形ABCD是是菱形.
(2) ∵平行四边形ABCD是是菱形,
∴AO=CO==4,DO=BO,
∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
在Rt△ABO中,由勾股定理可得:BO=3,
∴DO=BO=3,
在Rt△EAO中,由勾股定理可得:EO=4
∴ED=EO-DO=4-3.
26、(1)y;(2);(3)E(,0).
【解析】
(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
(2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
(3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
【详解】
解:(1)∵抛物线C1的顶点为,
∴可设抛物线C1的表达式为y,
将B(﹣1,0)代入抛物线解析式得:,
∴,
解得:a,
∴抛物线C1的表达式为y,即y.
(2)设抛物线C2的顶点坐标为
∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称
∴抛物线C2的顶点坐标为()
可设抛物线C2的表达式为y
∵抛物线C2开口朝下,且形状不变
∴抛物线C2的表达式为y,即.
(3)如图,作GK⊥x轴于G,DH⊥AB于H.
由题意GK=DH=3,AH=HB=EK=KF,
∵四边形AGFD是矩形,
∴∠AGF=∠GKF=90°,
∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
∴∠AGK=∠GFK.
∵∠AKG=∠FKG=90°,
∴△AGK∽△GFK,
∴,
∴,
∴AK=6,
,
∴BE=BK﹣EK=3,
∴OE,
∴E(,0).
【点睛】
本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
27、(1)5;(2)5n﹣4,na+6a.
【解析】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a.
【详解】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
故答案为:5;
(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,
∴第n个“新顾客”到达窗口时刻为5n﹣4,
由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,
∴第n个“新顾客”服务开始的时间为(6+n)a,
∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,
∵每a分钟办理一个客户,
∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,
故答案为:5n﹣4,na+6a.
【点睛】
本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.
2022届四川省成都市锦江区市级名校中考考前最后一卷数学试卷含解析: 这是一份2022届四川省成都市锦江区市级名校中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了关于的方程有实数根,则满足等内容,欢迎下载使用。
2021-2022学年四川省成都市简阳市重点中学中考数学考前最后一卷含解析: 这是一份2021-2022学年四川省成都市简阳市重点中学中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,已知点 A,一、单选题等内容,欢迎下载使用。
四川省凉山重点中学2022年中考数学考前最后一卷含解析: 这是一份四川省凉山重点中学2022年中考数学考前最后一卷含解析,共23页。试卷主要包含了下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。