|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届山东省枣庄市第九中学中考数学猜题卷含解析
    立即下载
    加入资料篮
    2022届山东省枣庄市第九中学中考数学猜题卷含解析01
    2022届山东省枣庄市第九中学中考数学猜题卷含解析02
    2022届山东省枣庄市第九中学中考数学猜题卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省枣庄市第九中学中考数学猜题卷含解析

    展开
    这是一份2022届山东省枣庄市第九中学中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下面运算正确的是,运用乘法公式计算等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于(  )

    A.30° B.35° C.40° D.50°
    2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

    A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
    C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
    3.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )

    A. B. C. D.
    4.二次函数y=a(x﹣m)2﹣n的图象如图,则一次函数y=mx+n的图象经过(  )

    A.第一、二、三象限 B.第一、二、四象限
    C.第二、三、四象限 D.第一、三、四象限
    5.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    6.下面运算正确的是(  )
    A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
    7.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )

    A. B. C. D.
    8.运用乘法公式计算(4+x)(4﹣x)的结果是(  )
    A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x2
    9.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为  

    A. B. C. D.
    10.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )

    A.10 B.14 C.20 D.22
    二、填空题(共7小题,每小题3分,满分21分)
    11.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.
    12.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

    13.如图,直线a∥b,正方形ABCD的顶点A、B分别在直线a、b上.若∠2=73°,则∠1= .

    14.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________

    15.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.

    16.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
    (1)计算△ABC的周长等于_____.
    (2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
    ___________________________.

    17.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.
    (1)求证:四边形CDBF是平行四边形;
    (2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的长.

    19.(5分)在△ABC中,∠A,∠B都是锐角,且sinA=,tanB=,AB=10,求△ABC的面积.
    20.(8分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
    (1)求证:△ACM∽△ABE.
    (2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
    (3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.

    21.(10分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
    (1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
    (2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
    (3)在(1)条件下,四边形AODC的面积为多少?

    22.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.
    (1)当AE平分∠BAC时,求证:∠BEF=∠BFE;
    (2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.

    23.(12分)在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
    (1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
    (2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?

    24.(14分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
    (1)求证:DE是⊙O的切线;
    (2)求EF的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.

    考点:平行线的性质.
    2、D
    【解析】
    首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
    【详解】
    解:

    四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
    ,,
    四边形是平行四边形(对边相互平行的四边形是平行四边形);
    过点分别作,边上的高为,.则
    (两纸条相同,纸条宽度相同);
    平行四边形中,,即,
    ,即.故正确;
    平行四边形为菱形(邻边相等的平行四边形是菱形).
    ,(菱形的对角相等),故正确;
    ,(平行四边形的对边相等),故正确;
    如果四边形是矩形时,该等式成立.故不一定正确.
    故选:.
    【点睛】
    本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
    3、A
    【解析】
    根据从正面看得到的图形是主视图,可得答案.
    【详解】
    解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
    故选:A.
    【点睛】
    本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
    4、A
    【解析】
    由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.
    【详解】
    解:观察函数图象,可知:m>0,n>0,
    ∴一次函数y=mx+n的图象经过第一、二、三象限.
    故选A.
    【点睛】
    本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.
    5、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    6、D
    【解析】
    分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案.
    【详解】
    解:A,,故此选项错误;
    B,,故此选项错误;
    C,,故此选项错误;
    D,,故此选项正确.
    所以D选项是正确的.
    【点睛】
    灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质可以求出答案.
    7、B
    【解析】
    连接OA、OB,利用正方形的性质得出OA=ABcos45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
    【详解】
    解:连接OA、OB,

    ∵四边形ABCD是正方形,
    ∴∠AOB=90°,∠OAB=45°,
    ∴OA=ABcos45°=4×=2,
    所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
    故选B.
    【点睛】
    本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.
    8、B
    【解析】
    根据平方差公式计算即可得解.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.
    9、A
    【解析】
    由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;
    【详解】
    函数与的图象在第二象限交于点,

    与反比例函数都是关于直线对称,
    与B关于直线对称,





    故选:A.
    【点睛】
    本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.
    10、B
    【解析】
    直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=DO,DC=AB=6,
    ∵AC+BD=16,
    ∴AO+BO=8,
    ∴△ABO的周长是:1.
    故选B.
    【点睛】
    平行四边形的性质掌握要熟练,找到等值代换即可求解.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3.86×108
    【解析】
    根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:
    3.86亿=386000000=3.86×108.
    故答案是:3.86×108.
    12、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)
    【解析】
    (1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
    (2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
    (1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
    【详解】
    解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,
    解得:b=﹣2,c=﹣1,
    ∴抛物线的解析式为.
    ∵令,解得:,,
    ∴点B的坐标为(﹣1,0).
    故答案为﹣2;﹣1;(﹣1,0).
    (2)存在.理由:如图所示:

    ①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).
    设AC的解析式为y=kx﹣1.
    ∵将点A的坐标代入得1k﹣1=0,解得k=1,
    ∴直线AC的解析式为y=x﹣1,
    ∴直线CP1的解析式为y=﹣x﹣1.
    ∵将y=﹣x﹣1与联立解得,(舍去),
    ∴点P1的坐标为(1,﹣4).
    ②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.
    ∵将x=1,y=0代入得:﹣1+b=0,解得b=1,
    ∴直线AP2的解析式为y=﹣x+1.
    ∵将y=﹣x+1与联立解得=﹣2,=1(舍去),
    ∴点P2的坐标为(﹣2,5).
    综上所述,P的坐标是(1,﹣4)或(﹣2,5).
    (1)如图2所示:连接OD.

    由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
    由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
    ∴D是AC的中点.
    又∵DF∥OC,
    ∴DF=OC=,
    ∴点P的纵坐标是,
    ∴,解得:x=,
    ∴当EF最短时,点P的坐标是:(,)或(,).
    13、107°
    【解析】
    过C作d∥a, 得到a∥b∥d,构造内错角,根据两直线平行,内错角相等,及平角的定义,即可得到∠1的度数.
    【详解】
    过C作d∥a, ∴a∥b, ∴a∥b∥d,

    ∵四边形ABCD是正方形,∴∠DCB=90°, ∵∠2=73°,∴∠6=90°-∠2=17°,
    ∵b∥d, ∴∠3=∠6=17°, ∴∠4=90°-∠3=73°, ∴∠5=180°-∠4=107°,
    ∵a∥d, ∴∠1=∠5=107°,故答案为107°.
    【点睛】
    本题考查了平行线的性质以及正方形性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作辅助线构造内错角.
    14、1
    【解析】
    分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
    详解:设D(a,),
    ∵点D为矩形OABC的AB边的中点,
    ∴B(2a,),
    ∴E(2a,),
    ∵△BDE的面积为1,
    ∴•a•(-)=1,解得k=1.
    故答案为1.
    点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
    15、+1
    【解析】
    根据对称性可知:GJ∥BH,GB∥JH,
    ∴四边形JHBG是平行四边形,
    ∴JH=BG,
    同理可证:四边形CDFB是平行四边形,
    ∴CD=FB,
    ∴FG+JH+CD=FG+BG+FB=2BF,
    设FG=x,
    ∵∠AFG=∠AFB,∠FAG=∠ABF=36°,
    ∴△AFG∽△BFA,
    ∴AF2=FG•BF,
    ∵AF=AG=BG=1,
    ∴x(x+1)=1,
    ∴x=(负根已经舍弃),
    ∴BF=+1=,
    ∴FG+JH+CD=+1.
    故答案为+1.
    16、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【解析】
    (1)利用勾股定理求出AB,从而得到△ABC的周长;
    (2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
    【详解】
    解:(1)∵AC=3,BC=4,∠C=90º,
    ∴根据勾股定理得AB=5,
    ∴△ABC的周长=5+4+3=12.
    (2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。

    故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
    【点睛】
    本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
    17、1
    【解析】
    分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.
    详解:连接OC,

    由圆周角定理得,∠COD=2∠A=64°,
    ∵CD为⊙O的切线,
    ∴OC⊥CD,
    ∴∠D=90°-∠COD=1°,
    故答案为:1.
    点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)1.
    【解析】
    (1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;
    (2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.
    【详解】
    解:(1)证明:∵CF∥AB,
    ∴∠ECF=∠EBD.
    ∵E是BC中点,
    ∴CE=BE.
    ∵∠CEF=∠BED,
    ∴△CEF≌△BED.
    ∴CF=BD.
    ∴四边形CDBF是平行四边形.
    (2)解:如图,作EM⊥DB于点M,

    ∵四边形CDBF是平行四边形,BC=,
    ∴,DF=2DE.
    在Rt△EMB中,EM=BE•sin∠ABC=2,
    在Rt△EMD中,∵∠EDM=30°,
    ∴DE=2EM=4,
    ∴DF=2DE=1.
    【点睛】
    本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.
    19、
    【解析】
    根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.
    【详解】
    如图:

    由已知可得:∠A=30°,∠B=60°,
    ∴△ABC为直角三角形,且∠C=90°,AB=10,
    ∴BC=AB·sin30°=10=5,
    AC=AB·cos30°=10=,
    ∴S△ABC=.
    【点睛】
    本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
    20、(1)证明见解析;(2)证明见解析;(3)74.
    【解析】
    (1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
    (2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
    (3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
    【详解】
    (1)证明:∵四边形ABCD和四边形AEMN都是正方形,
    ∴,∠CAB=∠MAC=45°,
    ∴∠CAB-∠CAE=∠MAC-∠CAE,
    ∴∠BAE=∠CAM,
    ∴△ACM∽△ABE.

    (2)证明:连结AC
    因为△ACM∽△ABE,则∠ACM=∠B=90°,
    因为∠ACB=∠ECF=45°,
    所以∠ACM+∠ACB+∠ECF=180°,
    所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
    所以BD平行MF,
    又因为MC=BE,FC=CE,
    所以MF=BC=BD,
    所以四边形BFMD是平行四边形

    (3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
    =62+42+(2+6)4+ 26
    =74.
    【点睛】
    本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
    21、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
    【解析】
    试题分析:
    (1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
    (2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
    (3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
    试题解析:
    (1)∵A(0,2),BC∥x轴,
    ∴B(﹣1,2),C(3,2),
    ∴AB=1,CA=3,
    ∴线段AB与线段CA的长度之比为;
    (2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
    ∴B(﹣,a),C(,a),
    ∴AB=,CA=,
    ∴线段AB与线段CA的长度之比为;
    (3)∵=,
    ∴=,
    又∵OA=a,CD∥y轴,
    ∴,
    ∴CD=4a,
    ∴四边形AODC的面积为=(a+4a)×=1.
    22、(1)证明见解析;(1)2
    【解析】
    分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD,然后根据对顶角相等可得∠BFE=∠AFD,等量代换即可得解;
    (1)根据中点定义求出BC,利用勾股定理列式求出AB即可.
    详解:(1)如图,∵AE平分∠BAC,∴∠1=∠1.
    ∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.
    ∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;
    (1)∵BE=1,∴BC=4,由勾股定理得:AB===2.

    点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.
    23、(1);(2)淇淇与嘉嘉抽到勾股数的可能性不一样.
    【解析】
    试题分析:
    (1)根据等可能事件的概率的定义,分别确定总的可能性和是勾股数的情况的个数;
    (2)用列表法列举出所有的情况和两张卡片上的数都是勾股数的情况即可.
    试题解析:
    (1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;
    (2)列表法:

    A
    B
    C
    D
    A

    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)

    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)

    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)

    由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,
    ∴P2=,
    ∵P1=,P2=,P1≠P2
    ∴淇淇与嘉嘉抽到勾股数的可能性不一样.
    24、 (1)见解析;(2) .
    【解析】
    (1)连接OD,根据切线的判定方法即可求出答案;
    (2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
    【详解】
    (1)连接OD,

    ∵△ABC是等边三角形,
    ∴∠C=∠A=∠B=60°,
    ∵OD=OB,
    ∴△ODB是等边三角形,
    ∴∠ODB=60°
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∴DE⊥AC
    ∴OD⊥DE,
    ∴DE是⊙O的切线
    (2)∵OD∥AC,点O是AB的中点,
    ∴OD为△ABC的中位线,
    ∴BD=CD=2
    在Rt△CDE中,
    ∠C=60°,
    ∴∠CDE=30°,
    ∴CE=CD=1
    ∴AE=AC﹣CE=4﹣1=3
    在Rt△AEF中,
    ∠A=60°,
    ∴EF=AE•sinA=3×sin60°=
    【点睛】
    本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.

    相关试卷

    山东省枣庄市第三十二中学2021-2022学年中考数学猜题卷含解析: 这是一份山东省枣庄市第三十二中学2021-2022学年中考数学猜题卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,若分式有意义,则a的取值范围为,下列说法正确的是等内容,欢迎下载使用。

    山东省济南市中学2022年中考数学猜题卷含解析: 这是一份山东省济南市中学2022年中考数学猜题卷含解析,共24页。试卷主要包含了二次函数y=ax2+bx+c,一组数据,下列运算正确的是等内容,欢迎下载使用。

    山东省费县2021-2022学年中考数学猜题卷含解析: 这是一份山东省费县2021-2022学年中考数学猜题卷含解析,共22页。试卷主要包含了图中三视图对应的正三棱柱是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map