终身会员
搜索
    上传资料 赚现金

    2022届山东省临沂市罗庄区、河东区、高新区三区中考数学考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    2022届山东省临沂市罗庄区、河东区、高新区三区中考数学考试模拟冲刺卷含解析第1页
    2022届山东省临沂市罗庄区、河东区、高新区三区中考数学考试模拟冲刺卷含解析第2页
    2022届山东省临沂市罗庄区、河东区、高新区三区中考数学考试模拟冲刺卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省临沂市罗庄区、河东区、高新区三区中考数学考试模拟冲刺卷含解析

    展开

    这是一份2022届山东省临沂市罗庄区、河东区、高新区三区中考数学考试模拟冲刺卷含解析,共24页。


    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为(  )
    A.1 B.﹣1 C.±1 D.0
    2.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )

    A. B.
    C. D.
    3.多项式ax2﹣4ax﹣12a因式分解正确的是( )
    A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)
    4.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=(  )

    A.141° B.144° C.147° D.150°
    5.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
    A. B. C. D.
    6.一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()

    A. B. C. D.
    7.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 ,,,,则四人中成绩最稳定的是( )
    A.甲 B.乙 C.丙 D.丁
    8.两个一次函数,,它们在同一直角坐标系中的图象大致是( )
    A. B. C. D.
    9.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )
    A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×1010
    10.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:
    居民(户)
    1
    2
    3
    4
    月用电量(度/户)
    30
    42
    50
    51
    那么关于这10户居民月用电量(单位:度),下列说法错误的是(  )
    A.中位数是50 B.众数是51 C.方差是42 D.极差是21
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点A在反比例函数y=(x>0)上,以OA为边作正方形OABC,边AB交y轴于点P,若PA:PB=1:2,则正方形OABC的面积=_____.

    12.不等式5﹣2x<1的解集为_____.
    13.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.

    14.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.

    15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_______.

    16.计算:______.
    三、解答题(共8题,共72分)
    17.(8分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.

    (1)如图1,若点E是DC的中点,CH与AB之间的数量关系是______;
    (2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;
    (3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
    18.(8分)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.
    (1)求证:四边形BFCE是平行四边形;
    (2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.

    19.(8分)(1)计算: ;
    (2)解不等式组 :
    20.(8分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:
    七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.
    21.(8分)如图,抛物线经过点A(﹣2,0),点B(0,4).
    (1)求这条抛物线的表达式;
    (2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
    (3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.

    22.(10分)发现
    如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
    验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
    延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣  )×180°.

    23.(12分)在中, , 是的角平分线,交于点 .
    (1)求的长;
    (2)求的长.

    24.如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
    (1)求证:DB=DE;
    (2)求证:直线CF为⊙O的切线;
    (3)若CF=4,求图中阴影部分的面积.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.
    【详解】
    解:把x=0代入方程得:a2﹣1=0,
    解得:a=±1,
    ∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,
    ∴a﹣1≠0,
    即a≠1,
    ∴a的值是﹣1.
    故选:B.
    【点睛】
    本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.
    2、D
    【解析】
    解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;
    当点Q在BC上时,如下图所示:

    ∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.
    点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
    3、A
    【解析】
    试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.
    解:ax2﹣4ax﹣12a
    =a(x2﹣4x﹣12)
    =a(x﹣6)(x+2).
    故答案为a(x﹣6)(x+2).
    点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.
    4、B
    【解析】
    先根据多边形的内角和公式分别求得正六边形和正五边形的每一个内角的度数,再根据多边形的内角和公式求得∠APG的度数.
    【详解】
    (6﹣2)×180°÷6=120°,
    (5﹣2)×180°÷5=108°,
    ∠APG=(6﹣2)×180°﹣120°×3﹣108°×2
    =720°﹣360°﹣216°
    =144°,
    故选B.
    【点睛】
    本题考查了多边形内角与外角,关键是熟悉多边形内角和定理:(n﹣2)•180 (n≥3)且n为整数).
    5、D
    【解析】
    根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.
    【详解】
    A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
    B、∵x1<x2,
    ∴△=b2-4ac>0,故本选项错误;
    C、若a>0,则x1<x0<x2,
    若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;
    D、若a>0,则x0-x1>0,x0-x2<0,
    所以,(x0-x1)(x0-x2)<0,
    ∴a(x0-x1)(x0-x2)<0,
    若a<0,则(x0-x1)与(x0-x2)同号,
    ∴a(x0-x1)(x0-x2)<0,
    综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.
    6、B
    【解析】
    根据题中给出的函数图像结合一次函数性质得出a<0,b>0,再由反比例函数图像性质得出c<0,从而可判断二次函数图像开口向下,对称轴:>0,即在y轴的右边,与y轴负半轴相交,从而可得答案.
    【详解】
    解:∵一次函数y=ax+b图像过一、二、四,
    ∴a<0,b>0,
    又∵反比例 函数y=图像经过二、四象限,
    ∴c<0,
    ∴二次函数对称轴:>0,
    ∴二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,
    故答案为B.
    【点睛】
    本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.
    7、D
    【解析】
    根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.
    【详解】
    ∵0.45<0.51<0.62,
    ∴丁成绩最稳定,
    故选D.
    【点睛】
    此题主要考查了方差,关键是掌握方差越小,稳定性越大.
    8、B
    【解析】
    根据各选项中的函数图象判断出a、b的符号,然后分别确定出两直线经过的象限以及与y轴的交点位置,即可得解.
    【详解】
    解:由图可知,A、B、C选项两直线一条经过第一三象限,另一条经过第二四象限,
    所以,a、b异号,
    所以,经过第一三象限的直线与y轴负半轴相交,经过第二四象限的直线与y轴正半轴相交,
    B选项符合,
    D选项,a、b都经过第二、四象限,
    所以,两直线都与y轴负半轴相交,不符合.
    故选:B.
    【点睛】
    本题考查了一次函数的图象,一次函数y=kx+b(k≠0),k>0时,一次函数图象经过第一三象限,k<0时,一次函数图象经过第二四象限,b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
    9、B
    【解析】
    根据题目中的数据可以用科学记数法表示出来,本题得以解决.
    【详解】
    解:3.82亿=3.82×108,
    故选B.
    【点睛】
    本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.
    10、C
    【解析】
    试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,
    平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,
    中位数为50;众数为51,极差为51-30=21,方差为[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.
    故选C.
    考点:1.方差;2.中位数;3.众数;4.极差.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1.
    【解析】
    根据题意作出合适的辅助线,然后根据正方形的性质和反比例函数的性质,相似三角形的判定和性质、勾股定理可以求得AB的长.
    【详解】
    解:由题意可得:OA=AB,设AP=a,则BP=2a,OA=3a,设点A的坐标为(m,),作AE⊥x轴于点E.
    ∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴点A的坐标为(1,3),∴OA=,∴正方形OABC的面积=OA2=1.
    故答案为1.

    【点睛】
    本题考查了反比例函数图象点的坐标特征、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    12、x>1.
    【解析】
    根据不等式的解法解答.
    【详解】
    解:,
    .
    故答案为
    【点睛】
    此题重点考查学生对不等式解的理解,掌握不等式的解法是解题的关键.
    13、﹣1<x<2
    【解析】
    根据图象得出取值范围即可.
    【详解】
    解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
    所以当y1>y2时,﹣1<x<2,
    故答案为﹣1<x<2
    【点睛】
    此题考查二次函数与不等式,关键是根据图象得出取值范围.
    14、12
    【解析】
    连接AO,BO,CO,如图所示:

    ∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
    ∴∠AOB==60°,∠AOC==90°,
    ∴∠BOC=30°,
    ∴n==12,
    故答案为12.
    15、(3,2).
    【解析】
    过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.
    【详解】
    过点P作PD⊥x轴于点D,连接OP,

    ∵A(6,0),PD⊥OA,
    ∴OD=OA=3,
    在Rt△OPD中 ∵OP= OD=3,
    ∴PD=2
    ∴P(3,2) .
    故答案为(3,2).
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    16、
    【解析】
    原式=
    =.
    故答案为:.

    三、解答题(共8题,共72分)
    17、(1)CH=AB.;(2)成立,证明见解析;(3)
    【解析】
    (1)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (2)首先根据全等三角形判定的方法,判断出△ABF≌△CBE,即可判断出∠1=∠2;然后根据EH⊥BF,∠BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出∠4=∠HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可.
    (3)首先根据三角形三边的关系,可得CK<AC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出△DFK≌△DEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出△DAK≌△DCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可.
    【详解】
    解:(1)如图1,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵点E是DC的中点,DE=EC,
    ∴点F是AD的中点,
    ∴AF=FD,
    ∴EC=AF,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立.
    如图2,连接BE,

    在正方形ABCD中,
    AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,
    ∵AD=CD,DE=DF,
    ∴AF=CE,
    在△ABF和△CBE中,

    ∴△ABF≌△CBE,
    ∴∠1=∠2,
    ∵EH⊥BF,∠BCE=90°,
    ∴C、H两点都在以BE为直径的圆上,
    ∴∠3=∠2,
    ∴∠1=∠3,
    ∵∠3+∠4=90°,∠1+∠HBC=90°,
    ∴∠4=∠HBC,
    ∴CH=BC,
    又∵AB=BC,
    ∴CH=AB.
    (3)如图3,

    ∵CK≤AC+AK,
    ∴当C、A、K三点共线时,CK的长最大,
    ∵∠KDF+∠ADH=90°,∠HDE+∠ADH=90°,
    ∴∠KDF=∠HDE,
    ∵∠DEH+∠DFH=360°-∠ADC-∠EHF=360°-90°-90°=180°,∠DFK+∠DFH=180°,
    ∴∠DFK=∠DEH,
    在△DFK和△DEH中,

    ∴△DFK≌△DEH,
    ∴DK=DH,
    在△DAK和△DCH中,

    ∴△DAK≌△DCH,
    ∴AK=CH
    又∵CH=AB,
    ∴AK=CH=AB,
    ∵AB=3,
    ∴AK=3,AC=3,
    ∴CK=AC+AK=AC+AB=,
    即线段CK长的最大值是.
    考点:四边形综合题.
    18、(1)证明见试题解析;(2)1.
    【解析】
    试题分析:(1)由AE=DF,∠A=∠D,AB=DC,易证得△AEC≌△DFB,即可得BF=EC,∠ACE=∠DBF,且EC∥BF,即可判定四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,根据菱形的性质即可得到结果.
    试题解析:(1)∵AB=DC,∴AC=DB,
    在△AEC和△DFB中,∴△AEC≌△DFB(SAS),
    ∴BF=EC,∠ACE=∠DBF,∴EC∥BF,∴四边形BFCE是平行四边形;
    (2)当四边形BFCE是菱形时,BE=CE,∵AD=10,DC=3,AB=CD=3,
    ∴BC=10﹣3﹣3=1,∵∠EBD=60°,∴BE=BC=1,
    ∴当BE=1时,四边形BFCE是菱形,
    故答案为1.
    【考点】
    平行四边形的判定;菱形的判定.
    19、(1);(2).
    【解析】
    (1)根据幂的运算与实数的运算性质计算即可.
    (2)先整理为最简形式,再解每一个不等式,最后求其解集.
    【详解】
    (1)解:原式=
    =
    (2)解不等式①,得 .
    解不等式②,得 .
    ∴ 原不等式组的解集为
    【点睛】
    本题考查了实数的混合运算和解一元一次不等式组,熟练掌握和运用相关运算性质是解答关键.
    20、48;105°;
    【解析】
    试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.
    试题解析:(1)12÷25%=48(人) 14÷48×360°=105° 48-(4+12+14)=18(人),补全图形如下:

    (2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:


    A1

    A1

    A2

    A2

    A1









    A1









    A2









    A2









    ∴由上表可得:
    考点:统计图、概率的计算.
    21、(1);(2)P(1,); (3)3或5.
    【解析】
    (1)将点A、B代入抛物线,用待定系数法求出解析式.
    (2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
    (3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
    【详解】
    解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
    ∴,解得,
    ∴抛物线解析式为,
    (2),
    ∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
    ∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
    ∴,
    ∴,
    ∴,

    ∴P(1,),
    (3)设新抛物线的表达式为
    则,,DE=2
    过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF

    ∴,
    ∴FH=1.
    点D在y轴的正半轴上,则,
    ∴,
    ∴,
    ∴m=3,
    点D在y轴的负半轴上,则,
    ∴,
    ∴,
    ∴m=5,
    ∴综上所述m的值为3或5.
    【点睛】
    本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
    22、(1)见解析;(2)见解析;(3)1.
    【解析】
    (1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
    (2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
    【详解】
    (1)如图2,延长AB交CD于E,
    则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
    ∴∠ABC=∠A+∠C+∠D;
    (2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
    ∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
    ∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
    则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
    ∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
    而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
    ∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
    故答案为1.



    【点睛】
    此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型
    23、(1)10;(2)的长为
    【解析】
    (1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.
    【详解】
    解:(1) 在中,
    ;
    (2 )过点作于,
    平分

    在和中

    ,


    .
    设,则
    在中,

    解得
    即的长为

    【点睛】
    本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.
    24、(1)证明见解析;(2)证明见解析;(3).
    【解析】
    (1)欲证明DB=DE.,只要证明∠DBE=∠DEB;
    (2)欲证明CF是⊙O的切线.,只要证明BC⊥CF即可;
    (3)根据S阴影部分S扇形S△OBD计算即可.
    【详解】
    解:(1)∵E是△ABC的内心,
    ∴∠BAE=∠CAE,∠EBA=∠EBC,
    ∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
    ∴∠DBE=∠DEB,
    ∴DB=DE
    (2)连接CD

    ∵DA平分∠BAC,
    ∴∠DAB=∠DAC,
    ∴BD=CD,
    又∵BD=DF,
    ∴CD=DB=DF,

    ∴BC⊥CF,
    ∴CF是⊙O的切线
    (3)连接OD
    ∵O、D是BC、BF的中点,CF4, ∴OD2.
    ∵CF是⊙O的切线,

    ∴△BOD为等腰直角三角形
    ∴S阴影部分S扇形S△OBD .
    【点睛】
    本题考查数学圆的综合题,考查了圆的切线的证明,扇形的面积公式等,注意切线的证明方法,是高频考点.

    相关试卷

    山东省临沂市罗庄区、河东区、高新区三区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案:

    这是一份山东省临沂市罗庄区、河东区、高新区三区2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    山东省临沂市罗庄区、河东区、高新区三区2023-2024学年八上数学期末统考模拟试题含答案:

    这是一份山东省临沂市罗庄区、河东区、高新区三区2023-2024学年八上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,把多项式分解因式,结果正确的是,若分式的值是0,则的值是,下列说法正确的是等内容,欢迎下载使用。

    山东省临沂市罗庄区、河东区、高新区三区2022-2023学年数学七年级第二学期期末教学质量检测模拟试题含答案:

    这是一份山东省临沂市罗庄区、河东区、高新区三区2022-2023学年数学七年级第二学期期末教学质量检测模拟试题含答案,共6页。试卷主要包含了答题时请按要求用笔,下列说法错误的是,一元二次方程的根的情况是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map