2022届江西省全南县中考数学四模试卷含解析
展开1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.关于x的一元二次方程(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,则m的取值范围是( )
A.m>B.m>且m≠2C.﹣<m<2D.<m<2
2.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的是( )
A.a<0B.b2-4ac<0C.当-1
3.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )
A.30,28 B.26,26 C.31,30 D.26,22
4.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )
A.B.C.D.
5.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )
A.1种B.2种C.3种D.6种
6.如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于( )
A.2﹣B.1C.D.﹣l
7.下列手机手势解锁图案中,是轴对称图形的是( )
A.B.C.D.
8.下列命题是真命题的是( )
A.过一点有且只有一条直线与已知直线平行
B.对角线相等且互相垂直的四边形是正方形
C.平分弦的直径垂直于弦,并且平分弦所对的弧
D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形
9.估计5﹣的值应在( )
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
10.一元二次方程x2﹣3x+1=0的根的情况( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.以上答案都不对
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.
12.关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是 .
13.如图,在平面直角坐标系中,点P(﹣1,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是_____.
14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x2﹣2x+1=﹣x2+5x﹣3:则所捂住的多项式是___.
15.已知关于x的方程有两个不相等的实数根,则m的最大整数值是 .
16.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其 浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.
三、解答题(共8题,共72分)
17.(8分)我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.A、B两种奖品每件各多少元?现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?
18.(8分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).
参考数据sin10°≈0.17,cs10°≈0.98,tan10°≈0.18,取1.1.
19.(8分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)该商场服装营业员的人数为 ,图①中m的值为 ;
(2)求统计的这组销售额数据的平均数、众数和中位数.
20.(8分)如图,将矩形ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
(1)求证:△ABF≌△EDF;
(2)若AB=6,BC=8,求AF的长.
21.(8分)如图,在四边形中,为一条对角线,,,.为的中点,连结.
(1)求证:四边形为菱形;
(2)连结,若平分,,求的长.
22.(10分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.
(1)求抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.
23.(12分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是 .
(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.
24.如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
(1)求证:∠F=∠B;
(2)若AB=12,BG=10,求AF的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
根据一元二次方程的根的判别式的意义得到m-2≠0且Δ=(2m-1)2-4(m-2)(m-2) >0,解得m>且m≠﹣2,再利用根与系数的关系得到, m﹣2≠0,解得<m<2,即可求出答案.
【详解】
解:由题意可知:m-2≠0且Δ=(2m﹣1)2﹣4(m﹣2)2=12m﹣15>0,
∴m>且m≠﹣2,
∵(m﹣2)x2+(2m﹣1)x+m﹣2=0有两个不相等的正实数根,
∴﹣>0,m﹣2≠0,
∴<m<2,
∵m>,
∴<m<2,
故选:D.
【点睛】
本题主要考查对根的判别式和根与系数的关系的理解能力及计算能力,掌握根据方程根的情况确定方程中字母系数的取值范围是解题的关键.
2、D
【解析】
试题分析:根据二次函数的图象和性质进行判断即可.
解:∵抛物线开口向上,
∴
∴A选项错误,
∵抛物线与x轴有两个交点,
∴
∴B选项错误,
由图象可知,当-1
由抛物线的轴对称性及与x轴的两个交点分别为(-1,0)和(3,0)可知对称轴为
即-=1,
∴D选项正确,
故选D.
3、B.
【解析】
试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
考点:中位数;加权平均数.
4、A
【解析】
试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.
解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,
从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,
综上所知这个几何体是圆柱.
故选A.
考点:由三视图判断几何体.
5、C
【解析】
试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C.
考点:正方体相对两个面上的文字.
6、D
【解析】
∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,
∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,AC′=AC=,
∴AD⊥BC,B′C′⊥AB,
∴AD=BC=1,AF=FC′=AC′=1,
∴DC′=AC′-AD=-1,
∴图中阴影部分的面积等于:S△AFC′-S△DEC′=×1×1-×( -1)2=-1,
故选D.
【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.
7、D
【解析】
根据轴对称图形与中心对称图形的定义进行判断.
【详解】
A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.
8、D
【解析】
根据真假命题的定义及有关性质逐项判断即可.
【详解】
A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;
B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;
C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;
D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.
故选D.
【点睛】
本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.
9、C
【解析】
先化简二次根式,合并后,再根据无理数的估计解答即可.
【详解】
5﹣=,
∵49<54<64,
∴7<<8,
∴5﹣的值应在7和8之间,
故选C.
【点睛】
本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
10、B
【解析】
首先确定a=1,b=-3,c=1,然后求出△=b2-4ac的值,进而作出判断.
【详解】
∵a=1,b=-3,c=1,
∴△=(-3)2-4×1×1=5>0,
∴一元二次方程x2-3x+1=0两个不相等的实数根;
故选B.
【点睛】
此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=8,AB=CD=6,∠ABC=90°,
∴
∵AO=OC,
∴
∵AO=OC,AM=MD=4,
∴
∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.
故答案为:1.
【点睛】
本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.
12、k<1且k≠1
【解析】
试题分析:根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范围.
解:∵关于x的一元二次方程kx2﹣2x+1=1有两个不相等的实数根,
∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,
解得k<1且k≠1.
∴k的取值范围为k<1且k≠1.
故答案为k<1且k≠1.
考点:根的判别式;一元二次方程的定义.
13、
【解析】
计算出当P在直线上时a的值,再计算出当P在直线上时a的值,即可得答案.
【详解】
解:当P在直线上时,,
当P在直线上时,,
则.
故答案为
【点睛】
此题主要考查了一次函数与一元一次不等式,关键是掌握函数图象经过的点,必能使解析式左右相等.
14、x2+7x-4
【解析】
设他所捂的多项式为A,则接下来利用去括号法则对其进行去括号,然后合并同类项即可.
【详解】
解:设他所捂的多项式为A,则根据题目信息可得
他所捂的多项式为
故答案为
【点睛】
本题是一道关于整数加减运算的题目,解答本题的关键是熟练掌握整数的加减运算;
15、1.
【解析】
试题分析:∵关于x的方程有两个不相等的实数根,
∴.
∴m的最大整数值为1.
考点:1.一元二次方程根的判别式;2.解一元一次不等式.
16、
【解析】
科学记数法的表示形式为ax10n的形式,其中1≤lal<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:0.0000872=
故答案为:
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
三、解答题(共8题,共72分)
17、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.
【解析】
【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.
【详解】(1)设A种奖品每件x元,B种奖品每件y元,
根据题意得:,
解得:,
答:A种奖品每件16元,B种奖品每件4元;
(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,
根据题意得:16a+4(100﹣a)≤900,
解得:a≤,
∵a为整数,
∴a≤41,
答:A种奖品最多购买41件.
【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.
18、建筑物AB的高度约为30.3m.
【解析】
分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.
详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.
过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE为矩形,∴DE=BC=2.
在Rt△ADE中,tan∠ADE=,
∴AE=DE•tan30°=.
在Rt△DEB中,tan∠BDE=,
∴BE=DE•tan10°=2×0.18=7.2,
∴AB=AE+BE=23.09+7.2=30.29≈30.3.
答:建筑物AB的高度约为30.3m.
点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.
19、(1)25;28;(2)平均数:1.2;众数:3;中位数:1.
【解析】
(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;
(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.
【详解】
解:(1)根据条形图2+5+7+8+3=25(人),
m=100-20-32-12-8=28;
故答案为:25;28;
(2)观察条形统计图,
∵
∴这组数据的平均数是1.2.
∵在这组数据中,3 出现了8次,出现的次数最多,
∴这组数据的众数是3.
∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,
∴这组数据的中位数是1.
【点睛】
此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
20、(1)见解析;(2)
【解析】
(1)根据矩形的性质可得AB=CD,∠C=∠A=90°,再根据折叠的性质可得DE=CD,∠C=∠E=90°,然后利用“角角边”证明即可;
(2)设AF=x,则BF=DF=8-x,根据勾股定理列方程求解即可.
【详解】
(1)证明:在矩形ABCD中,AB=CD,∠A=∠C=90°,
由折叠得:DE=CD,∠C=∠E=90°,
∴AB=DE,∠A=∠E=90°,
∵∠AFB=∠EFD,
∴△ABF≌△EDF(AAS);
(2)解:∵△ABF≌△EDF,
∴BF=DF,
设AF=x,则BF=DF=8﹣x,
在Rt△ABF中,由勾股定理得:
BF2=AB2+AF2,即(8﹣x)2=x2+62,
x=,即AF=
【点睛】
本题考查了翻折变换的性质,全等三角形的判定与性质,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,利用勾股定理列出方程是解题的关键.
21、(1)证明见解析;(2)AC=;
【解析】
(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;
(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;
【详解】
(1)证明:∵AD=2BC,E为AD的中点,
∴DE=BC,
∵AD∥BC,
∴四边形BCDE是平行四边形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四边形BCDE是菱形.
(2)连接AC,如图所示:
∵∠ADB=30°,∠ABD=90°,
∴AD=2AB,
∵AD=2BC,
∴AB=BC,
∴∠BAC=∠BCA,
∵AD∥BC,
∴∠DAC=∠BCA,
∴∠CAB=∠CAD=30°
∴AB=BC=DC=1,AD=2BC=2,
∵∠DAC=30°,∠ADC=60°,
在Rt△ACD中,AC=.
【点睛】
考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.
22、(1)y=﹣x2+x+3;D(1,);(2)P(3,).
【解析】
(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;
(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.
【详解】
解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),
将点C(0,3)代入得:﹣8a=3,
解得:a=﹣,
y=﹣x2+x+3=﹣(x﹣1)2+,
∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);
(2)∵B(4,0),C(0,3),
∴BC的解析式为:y=﹣x+3,
∵D(1,),
当x=1时,y=﹣+3=,
∴E(1,),
∴DE=-=,
设P(m,﹣m2+m+3),则F(m,﹣m+3),
∵四边形DEFP是平行四边形,且DE∥FP,
∴DE=FP,
即(﹣m2+m+3)﹣(﹣m+3)=,
解得:m1=1(舍),m2=3,
∴P(3,).
【点睛】
本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.
23、(1)m=30, n=20,图详见解析;(2)90°;(3).
【解析】
分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.
详解:(1)∵总人数为15÷15%=100(人),
∴D组人数m=100×30%=30,E组人数n=100×20%=20,
补全条形图如下:
(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,
(3)记通过为A、淘汰为B、待定为C,
画树状图如下:
由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,
∴E组学生王云参加鄂州市“汉字听写”比赛的概率为.
点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.
24、(1)见解析;(2).
【解析】
(1)根据圆周角定理得到∠GAB=∠B,根据切线的性质得到∠GAB+∠GAF=90°,证明∠F=∠GAB,等量代换即可证明;
(2)连接OG,根据勾股定理求出OG,证明△FAO∽△BOG,根据相似三角形的性质列出比例式,计算即可.
【详解】
(1)证明:∵,
∴.
∴∠GAB=∠B,
∵AF是⊙O的切线,
∴AF⊥AO.
∴∠GAB+∠GAF=90°.
∵OE⊥AC,
∴∠F+∠GAF=90°.
∴∠F=∠GAB,
∴∠F=∠B;
(2)解:连接OG.
∵∠GAB=∠B,
∴AG=BG.
∵OA=OB=6,
∴OG⊥AB.
∴,
∵∠FAO=∠BOG=90°,∠F=∠B,
∴△FAO∽△BOG,
∴.
∴.
【点睛】
本题考查的是切线的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.
组别
正确数字x
人数
A
0≤x<8
10
B
8≤x<16
15
C
16≤x<24
25
D
24≤x<32
m
E
32≤x<40
n
2022年江西省新余市名校中考数学四模试卷含解析: 这是一份2022年江西省新余市名校中考数学四模试卷含解析,共27页。试卷主要包含了已知下列命题等内容,欢迎下载使用。
2022年江西省吉水县中考数学四模试卷含解析: 这是一份2022年江西省吉水县中考数学四模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2022年江西省重点名校中考数学四模试卷含解析: 这是一份2022年江西省重点名校中考数学四模试卷含解析,共23页。试卷主要包含了如图,在中,,3的相反数是,近似数精确到等内容,欢迎下载使用。