2022届江西省庐山市中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数
0
1
2
3
4
人数
4
12
16
17
1
关于这组数据,下列说法正确的是( )
A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
2.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
3.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是( )
A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2
4.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )
A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
6.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为( )
A.15° B.75°或15° C.105°或15° D.75°或105°
7.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=( )
A.6 B. C.12﹣π D.12﹣π
8.如图,AB为⊙O的直径,C,D为⊙O上的两点,若AB=14,BC=1.则∠BDC的度数是( )
A.15° B.30° C.45° D.60°
9.cos45°的值是( )
A. B. C. D.1
10.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
12.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为2,4,6,8,…分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次记为S1,S2,S3,…,Sn,则S1+S2+S3+…+Sn=_____(用含n的代数式表示)
13.因式分解:x2﹣10x+24=_____.
14.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.
15.如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)_____.
16.一元二次方程有两个不相等的实数根,则的取值范围是________.
三、解答题(共8题,共72分)
17.(8分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.
(1)判断:一个内角为120°的菱形 等距四边形.(填“是”或“不是”)
(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为 端点均为非等距点的对角线长为
(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.
18.(8分)已知x1﹣1x﹣1=1.求代数式(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)的值.
19.(8分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元
(1)笔记本和钢笔的单价各多少元?
(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;
(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.
20.(8分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)
21.(8分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;
求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;
如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.
22.(10分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:
八年级(2)班参加球类活动人数情况统计表
项目
篮球
足球
乒乓球
排球
羽毛球
人数
a
6
5
7
6
八年级(2)班学生参加球类活动人数情况扇形统计图
根据图中提供的信息,解答下列问题:a= ,b= .该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
24.计算: .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
2、B
【解析】
根据题意和函数的图像,可知抛物线的对称轴为直线x=-=1,即b=-4a,变形为4a+b=0,所以(1)正确;
由x=-3时,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正确;
因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;
根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;
根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.
正确的共有3个.
故选B.
点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.
3、A
【解析】
根据已知得出圆锥的底面半径及母线长,那么利用圆锥的侧面积=底面周长×母线长÷2求出即可.
【详解】
∵圆锥的轴截面是一个边长为3cm的等边三角形,
∴底面半径=1.5cm,底面周长=3πcm,
∴圆锥的侧面积=×3π×3=4.5πcm2,
故选A.
【点睛】
此题主要考查了圆锥的有关计算,关键是利用圆锥的侧面积=底面周长×母线长÷2得出.
4、C
【解析】
依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
【详解】
解:∵a∥b,
∴∠1=∠BAC=40°,
又∵∠ABC=90°,
∴∠2=90°−40°=50°,
故选C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
5、D
【解析】
由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
【详解】
解:∵△OAB绕O点逆时针旋转60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
故选D.
【点睛】
本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
6、C
【解析】
解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;
如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.
点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.
7、D
【解析】
根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
【详解】
解:∵BC=4,E为BC的中点,
∴CE=2,
∴S1﹣S2=3×4﹣ ,
故选D.
【点睛】
此题考查扇形面积的计算,矩形的性质及面积的计算.
8、B
【解析】
只要证明△OCB是等边三角形,可得∠CDB=∠COB即可解决问题.
【详解】
如图,连接OC,
∵AB=14,BC=1,
∴OB=OC=BC=1,
∴△OCB是等边三角形,
∴∠COB=60°,
∴∠CDB=∠COB=30°,
故选B.
【点睛】
本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.
9、C
【解析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
【详解】
cos45°= .
故选:C.
【点睛】
本题考查特殊角的三角函数值.
10、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
【详解】
解:1.111121=2.1×11-2.
故答案为:2.1×11-2.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
12、10﹣
【解析】
过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn+1于点D,所有的阴影部分平移到左边,阴影部分的面积之和就等于矩形P1ABD的面积,即可得到答案.
【详解】
如图,过点P1、点Pn+1作y轴的垂线段,垂足分别是点A、B,过点P1作x轴的垂线段,垂足是点C,P1C交BPn于点D,
则点Pn+1的坐标为(2n+2,),
则OB=,
∵点P1的横坐标为2,
∴点P1的纵坐标为5,
∴AB=5﹣,
∴S1+S2+S3+…+Sn=S矩形AP1DB=2(5﹣)=10﹣,
故答案为10﹣.
【点睛】
本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解题的关键是掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|.
13、(x﹣4)(x﹣6)
【解析】
因为(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.
【详解】
x2﹣10x+24= x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)
【点睛】
本题考查的是因式分解,熟练掌握因式分解的方法是解题的关键.
14、1
【解析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
【详解】
如图,连接BE,
∵四边形BCEK是正方形,
∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,
∴BF=CF,
根据题意得:AC∥BK,
∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,
∴KO:KF=1:1,
∴KO=OF=CF=BF,
在Rt△PBF中,tan∠BOF==1,
∵∠AOD=∠BOF,
∴tan∠AOD=1.
故答案为1
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
15、(4π﹣3)cm1
【解析】
连接OB、OC,作OH⊥BC于H,根据圆周角定理可知∠BOC的度数,根据等边三角形的性质可求出OB、OH的长度,利用阴影面积=S扇形OBC-S△OBC即可得答案
【详解】
:连接OB、OC,作OH⊥BC于H,
则BH=HC= BC= 3,
∵△ABC为等边三角形,
∴∠A=60°,
由圆周角定理得,∠BOC=1∠A=110°,
∵OB=OC,
∴∠OBC=30°,
∴OB==1 ,OH=,
∴阴影部分的面积= ﹣×6×=4π﹣3 ,
故答案为:(4π﹣3)cm1.
【点睛】
本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.
16、且
【解析】
根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.
【详解】
由题意可得,1−k≠0,△=4+4(1−k)>0,
∴k<2且k≠1.
故答案为k<2且k≠1.
【点睛】
本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.
三、解答题(共8题,共72分)
17、(1)是;(2)见解析;(3)150°.
【解析】
(1)由菱形的性质和等边三角形的判定与性质即可得出结论;
(2)根据题意画出图形,由勾股定理即可得出答案;
(3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.
【详解】
解:(1)一个内角为120°的菱形是等距四边形;
故答案为是;
(2)如图2,图3所示:
在图2中,由勾股定理得:
在图3中,由勾股定理得:
故答案为
(3)解:连接BD.如图1所示:
∵△ABE与△CDE都是等腰直角三角形,
∴DE=EC,AE=EB,
∠DEC+∠BEC=∠AEB+∠BEC,
即∠AEC=∠DEB,
在△AEC和△BED中, ,
∴△AEC≌△BED(SAS),
∴AC=BD,
∵四边形ABCD是以A为等距点的等距四边形,
∴AD=AB=AC,
∴AD=AB=BD,
∴△ABD是等边三角形,
∴∠DAB=60°,
∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,
在△AED和△AEC中,
∴△AED≌△AEC(SSS),
∴∠CAE=∠DAE=15°,
∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,
∵AB=AC,AC=AD,
∴
∴∠BCD=∠ACB+∠ACD=75°+75°=150°.
【点睛】
本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.
18、2.
【解析】
将原式化简整理,整体代入即可解题.
【详解】
解:(x﹣1)1+x(x﹣4)+(x﹣1)(x+1)
=x1﹣1x+1+x1﹣4x+x1﹣4
=3x1﹣2x﹣3,
∵x1﹣1x﹣1=1
∴原式=3x1﹣2x﹣3=3(x1﹣1x﹣1)=3×1=2.
【点睛】
本题考查了代数式的化简求值,属于简单题,整体代入是解题关键.
19、(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.
【解析】
(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得
答:每个文具盒14元,每支钢笔15元.
(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.
买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:
当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),
即y2=12x+1.
(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;
当y1=y2,即12.6x=12x+1时,解得x=2;
当y1>y2,即12.6x>12x+1时,解得x>2.
综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;
当购买奖品2件时,买文具盒和买钢笔钱数相等;
当购买奖品超过2件时,买钢笔省钱.
20、此时轮船所在的B处与灯塔P的距离是98海里.
【解析】
【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.
【详解】作PC⊥AB于C点,
∴∠APC=30°,∠BPC=45° ,AP=80(海里),
在Rt△APC中,cos∠APC=,
∴PC=PA•cos∠APC=40(海里),
在Rt△PCB中,cos∠BPC=,
∴PB==40≈98(海里),
答:此时轮船所在的B处与灯塔P的距离是98海里.
【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.
21、(1)一共调查了300名学生.
(2)
(3)体育部分所对应的圆心角的度数为48°.
(4)1800名学生中估计最喜爱科普类书籍的学生人数为1.
【解析】
(1)用文学的人数除以所占的百分比计算即可得解.
(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可.
(3)用体育所占的百分比乘以360°,计算即可得解.
(4)用总人数乘以科普所占的百分比,计算即可得解.
【详解】
解:(1)∵90÷30%=300(名),
∴一共调查了300名学生.
(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名.
补全折线图如下:
(3)体育部分所对应的圆心角的度数为:×360°=48°.
(4)∵1800×=1(名),
∴1800名学生中估计最喜爱科普类书籍的学生人数为1.
22、 (1)a=16,b=17.5(2)90(3)
【解析】
试题分析:(1)首先求得总人数,然后根据百分比的定义求解;
(2)利用总数乘以对应的百分比即可求解;
(3)利用列举法,根据概率公式即可求解.
试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;
(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;
(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.
考点:列表法与树状图法;用样本估计总体;扇形统计图.
23、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.
【解析】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.
【详解】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
依题意,得:,
解得:.
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,
依题意,得:60m+45(50﹣m)≤2550,
解得:m≤1.
答:最多可以购进1筒甲种羽毛球.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
24、10
【解析】
【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.
【详解】原式=1+9-+4
=10-+
=10.
【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.
辽宁省鞍山市市级名校2022年中考数学最后一模试卷含解析: 这是一份辽宁省鞍山市市级名校2022年中考数学最后一模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,关于x的正比例函数,y=等内容,欢迎下载使用。
江西省吉安市朝宗实验校2021-2022学年中考数学最后一模试卷含解析: 这是一份江西省吉安市朝宗实验校2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了化简,的相反数是等内容,欢迎下载使用。
2022年江西省宁都县中考数学最后一模试卷含解析: 这是一份2022年江西省宁都县中考数学最后一模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。