2022届江苏省泰州市兴化市顾庄区中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.函数中,x的取值范围是( )
A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2
2.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是( )
A.∠ADC B.∠ABD C.∠BAC D.∠BAD
3.下列计算正确的是
A.a2·a2=2a4 B.(-a2)3=-a6 C.3a2-6a2=3a2 D.(a-2)2=a2-4
4.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )
A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD
5.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )
A. B. C. D.
6.如果,那么的值为( )
A.1 B.2 C. D.
7.若一个凸多边形的内角和为720°,则这个多边形的边数为
A.4 B.5 C.6 D.7
8.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为( )
A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
9.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2
10.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
A. B. C. D.
11.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )
A. B. C. D.
12.的相反数是( )
A. B.- C. D.-
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.四边形ABCD中,向量_____________.
14.若式子在实数范围内有意义,则x的取值范围是 .
15.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.
16.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.
17.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
18.计算:
(1)()2=_____;
(2) =_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
20.(6分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.
21.(6分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.
(Ⅰ)若∠ABC=29°,求∠D的大小;
(Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:
①BE的长;
②四边形ABCD的面积.
22.(8分)计算:﹣|﹣2|+()﹣1﹣2cos45°
23.(8分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
24.(10分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.
25.(10分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
26.(12分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
(1)求出y与x的函数关系式.(纯利润=总收入-总支出)
(2)当y=106000时,求该厂在这个月中生产产品的件数.
27.(12分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
要使有意义,
所以x+1≥0且x+1≠0,
解得x>-1.
故选B.
2、D
【解析】
∵∠ACD对的弧是,对的另一个圆周角是∠ABD,
∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),
又∵AB为直径,
∴∠ADB=90°,
∴∠ABD+∠BAD=90°,
即∠ACD+∠BAD=90°,
∴与∠ACD互余的角是∠BAD.
故选D.
3、B
【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.
【详解】A. a2·a2=a4 ,故A选项错误;
B. (-a2)3=-a6 ,正确;
C. 3a2-6a2=-3a2 ,故C选项错误;
D. (a-2)2=a2-4a+4,故D选项错误,
故选B.
【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.
4、D
【解析】
根据垂径定理判断即可.
【详解】
连接DA.
∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
∵2∠DAB=∠BOD,∴∠CAD=∠BOD.
故选D.
【点睛】
本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
5、C.
【解析】
试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,
∵OB=5,OD=3,∴根据勾股定理得BD=4.
∵∠A=∠BOC,∴∠A=∠BOD.
∴tanA=tan∠BOD=.
故选D.
考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.
6、D
【解析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.
【详解】
故选:D.
【点睛】
本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.
7、C
【解析】
设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.
【详解】
设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.
【点睛】
本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.
8、B
【解析】
解:3400000=.
故选B.
9、C
【解析】
圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.
故答案为C
10、D
【解析】
先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
【详解】
随机掷一枚均匀的硬币两次,落地后情况如下:
至少有一次正面朝上的概率是,
故选:D.
【点睛】
本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
11、C
【解析】
试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.
考点:中心对称图形的概念.
12、B
【解析】
∵+(﹣)=0,
∴的相反数是﹣.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
分析:
根据“向量运算”的三角形法则进行计算即可.
详解:
如下图所示,由向量运算的三角形法则可得:
=
=.
故答案为.
点睛:理解向量运算的三角形法则是正确解答本题的关键.
14、.
【解析】
根据二次根式被开方数必须是非负数的条件,
要使在实数范围内有意义,必须.
故答案为
15、3
【解析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.
【详解】
由题意可知:∠AOB=2∠ACB=2×40°=80°,
设扇形半径为x,
故阴影部分的面积为πx2×=×πx2=2π,
故解得:x1=3,x2=-3(不合题意,舍去),
故答案为3.
【点睛】
本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.
16、
【解析】
试题解析:∵共6个数,小于5的有4个,∴P(小于5)==.故答案为.
17、k≥-1
【解析】
首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
【详解】
当时,方程是一元一次方程:,方程有实数根;
当时,方程是一元二次方程,
解得:且.
综上所述,关于的方程有实数根,则的取值范围是.
故答案为
【点睛】
考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
这种情况.
18、
【解析】
(1)直接利用分式乘方运算法则计算得出答案;
(2)直接利用分式除法运算法则计算得出答案.
【详解】
(1)()2=;
故答案为;
(2) ==.
故答案为.
【点睛】
此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2)-1
【解析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;
(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.
【详解】
解:(1)
①+②得,.
将时代入①得,,
∴.
(2)设“□”为a,
∵x、y是一对相反数,
∴把x=-y代入x-y=4得:-y-y=4,
解得:y=-2,
即x=2,
所以方程组的解是,
代入ax+y=-8得:2a-2=-8,
解得:a=-1,
即原题中“□”是-1.
【点睛】
本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.
20、 (1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.
【解析】
(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.
【详解】
解:(1)△APD≌△CPD.
理由:∵四边形ABCD是菱形,
∴AD=CD,∠ADP=∠CDP.
又∵PD=PD,∴△APD≌△CPD(SAS).
(2)∵△APD≌△CPD,
∴∠DAP=∠DCP,
∵CD∥AB,
∴∠DCF=∠DAP=∠CFB,
又∵∠FPA=∠FPA,
∴△APE∽△FPA(两组角相等则两三角形相似).
(3)猜想:PC2=PE•PF.
理由:∵△APE∽△FPA,
∴即PA2=PE•PF.
∵△APD≌△CPD,
∴PA=PC.
∴PC2=PE•PF.
【点睛】
本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.
21、(1)∠D=32°;(2)①BE=;②
【解析】
(Ⅰ)连接OC, CD为切线,根据切线的性质可得∠OCD=90°,根据圆周角定理可得∠AOC=2∠ABC=29°×2=58°,根据直角三角形的性质可得∠D的大小.
(Ⅱ)①根据∠D=30°,得到∠DOC=60°,根据∠BAO=15°,可以得出∠AOB=150°,进而证明△OBC为等腰直角三角形,根据等腰直角三角形的性质得出
根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;
②根据四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB进行计算即可.
【详解】
(Ⅰ)连接OC,
∵CD为切线,
∴OC⊥CD,
∴∠OCD=90°,
∵∠AOC=2∠ABC=29°×2=58°,
∴∠D=90°﹣58°=32°;
(Ⅱ)①连接OB,
在Rt△OCD中,∵∠D=30°,
∴∠DOC=60°,
∵∠BAO=15°,
∴∠OBA=15°,
∴∠AOB=150°,
∴∠OBC=150°﹣60°=90°,
∴△OBC为等腰直角三角形,
∴
∵
在Rt△CBE中,
∴
②作BH⊥OA于H,如图,
∵∠BOH=180°﹣∠AOB=30°,
∴
∴四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB
【点睛】
考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中.
22、+1
【解析】
分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
详解:原式=2﹣2+3﹣2×
=2+1﹣
=+1.
点睛:本题主要考查了实数运算,正确化简各数是解题的关键.
23、25%
【解析】
首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
【详解】
设这两年中获奖人次的平均年增长率为x,
根据题意得:48+48(1+x)+48(1+x)2=183,
解得:x1==25%,x2=﹣(不符合题意,舍去).
答:这两年中获奖人次的年平均年增长率为25%
24、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
【解析】
分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
详解:(1)∵tan∠AOH==
∴AH=OH=4
∴A(-4,3),代入,得
k=-4×3=-12
∴反比例函数为
∴
∴m=6
∴B(6,-2)
∴
∴=,b=1
∴一次函数为
(2)
△AHO的周长为:3+4+5=12
点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
25、 (1) 60,90;(2)见解析;(3) 300人
【解析】
(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
(2)由(1)可求得了解的人数,继而补全条形统计图;
(3)利用样本估计总体的方法,即可求得答案.
【详解】
解:(1)∵了解很少的有30人,占50%,
∴接受问卷调查的学生共有:30÷50%=60(人);
∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
故答案为60,90;
(2)60﹣15﹣30﹣10=5;
补全条形统计图得:
(3)根据题意得:900×=300(人),
则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
【点睛】
本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
26、(1)y=19x-1(x>0且x是整数) (2)6000件
【解析】
(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;
(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.
【详解】
(1)依题意得:y=80x-60x-0.5x•2-1,
化简得:y=19x-1,
∴所求的函数关系式为y=19x-1.(x>0且x是整数)
(2)当y=106000时,代入得:106000=19x-1,
解得x=6000,
∴这个月该厂生产产品6000件.
【点睛】
本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.
27、(1)75°(2)见解析
【解析】
(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;
(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.
【详解】
解:(1)∵△ABC是等边三角形
∴∠ACB=60°,BC=AC
∵等边△ABC绕点C顺时针旋转90°得到△EFC
∴CF=BC,∠BCF=90°,AC=CE
∴CF=AC
∵∠BCF=90°,∠ACB=60°
∴∠ACF=∠BCF﹣∠ACB=30°
∴∠CFA=(180°﹣∠ACF)=75°
(2)∵△ABC和△EFC是等边三角形
∴∠ACB=60°,∠E=60°
∵CD平分∠ACE
∴∠ACD=∠ECD
∵∠ACD=∠ECD,CD=CD,CA=CE,
∴△ECD≌△ACD(SAS)
∴∠DAC=∠E=60°
∴∠DAC=∠ACB
∴AD∥BC
【点睛】
本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
江苏省兴化市顾庄区2022年毕业升学考试模拟卷数学卷含解析: 这是一份江苏省兴化市顾庄区2022年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了答题时请按要求用笔,满足不等式组的整数解是,的相反数是,下列运算正确的是等内容,欢迎下载使用。
江苏省兴化市顾庄学区2021-2022学年中考数学模拟试题含解析: 这是一份江苏省兴化市顾庄学区2021-2022学年中考数学模拟试题含解析,共24页。试卷主要包含了八边形的内角和为等内容,欢迎下载使用。
2022年江苏省泰州市兴化市顾庄区中考数学五模试卷含解析: 这是一份2022年江苏省泰州市兴化市顾庄区中考数学五模试卷含解析,共17页。试卷主要包含了估计的值在,如图,O为原点,点A的坐标为,比较4,,的大小,正确的是等内容,欢迎下载使用。