2022届江苏省无锡市长泾片中考数学最后冲刺模拟试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )
A.3﹣或1+ B.3﹣或3+
C.3+或1﹣ D.1﹣或1+
2.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b
A.2个 B.3个 C.4个 D.5个
3.吉林市面积约为27100平方公里,将27100这个数用科学记数法表示为( )
A.27.1×102 B.2.71×103 C.2.71×104 D.0.271×105
4.下列判断正确的是( )
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨
C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
5.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x2﹣2x+kb+1=0 的根的情况是( )
A.有两个不相等的实数根 B.没有实数根
C.有两个相等的实数根 D.有一个根是 0
6.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )
A. B. C. D.
7.如图,某计算机中有、、三个按键,以下是这三个按键的功能.
(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.
(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.
(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.
若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少( )
A.0.01 B.0.1 C.10 D.100
8.如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )
A.40° B.36° C.50° D.45°
9.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是( )
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
10.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8 B.9 C.10 D.11
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.
12.因式分解:_______________________.
13.分解因式: .
14.已知x+y=,xy=,则x2y+xy2的值为____.
15.分解因式:8x²-8xy+2y²= _________________________ .
16.阅读以下作图过程:
第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);
第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);
第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.
请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为______.
三、解答题(共8题,共72分)
17.(8分)如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
18.(8分)(1)计算:.
(2)解方程:x2﹣4x+2=0
19.(8分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.求证:△ABE∽△DEF.若正方形的边长为4,求BG的长.
20.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
21.(8分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
(Ⅰ)如图①,求∠CED的大小;
(Ⅱ)如图②,当DE=BE时,求∠C的大小.
22.(10分)在星期一的第八节课,我校体育老师随机抽取了九年级的总分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A、B、C、D、E、F六个等级,并绘制成如下两幅不完整的统计图表.
等级
得分x(分)
频数(人)
A
95<x≤100
4
B
90<x≤95
m
C
85<x≤90
n
D
80<x≤85
24
E
75<x≤80
8
F
70<x≤75
4
请你根据图表中的信息完成下列问题:
(1)本次抽样调查的样本容量是 .其中m= ,n= .
(2)扇形统计图中,求E等级对应扇形的圆心角α的度数;
(3)我校九年级共有700名学生,估计体育测试成绩在A、B两个等级的人数共有多少人?
(4)我校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
23.(12分)如图,AB为圆O的直径,点C为圆O上一点,若∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.
(1)试判断CD与圆O的位置关系,并说明理由;
(2)若直线l与AB的延长线相交于点E,圆O的半径为3,并且∠CAB=30°,求AD的长.
24.已知:如图,在菱形中,点,,分别为,,的中点,连接,,,.
求证:;
当与满足什么关系时,四边形是正方形?请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最大值-5,
可得:-(1-h)2+1=-5,
解得:h=1-或h=1+(舍);
②若1≤x≤3<h,当x=3时,y取得最大值-5,
可得:-(3-h)2+1=-5,
解得:h=3+或h=3-(舍).
综上,h的值为1-或3+,
故选C.
点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.
2、B
【解析】
根据二次函数的图象与性质判断即可.
【详解】
①由抛物线开口向上知: a>1; 抛物线与y轴的负半轴相交知c<1; 对称轴在y轴的右侧知:b>1;所以:abc<1,故①错误;
②对称轴为直线x=-1,,即b=2a,
所以b-2a=1.故②错误;
③由抛物线的性质可知,当x=-1时,y有最小值,
即a-b+c<(),
即a﹣b<m(am+b)(m≠﹣1),
故③正确;
④因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;
⑤由图像可得,当x=2时,y>1,
即: 4a+2b+c>1,
故⑤正确.
故正确选项有③④⑤,
故选B.
【点睛】
本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.
3、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将27100用科学记数法表示为:. 2.71×104.
故选:C.
【点睛】
本题考查科学记数法—表示较大的数。
4、C
【解析】
直接利用概率的意义以及随机事件的定义分别分析得出答案.
【详解】
A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;
B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;
C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;
D、“a是实数,|a|≥0”是必然事件,故此选项错误.
故选C.
【点睛】
此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.
5、A
【解析】
判断根的情况,只要看根的判别式△=b2−4ac的值的符号就可以了.
【详解】
∵一次函数y=kx+b的图像经过第一、三、四象限
∴k>0, b<0
∴△=b2−4ac=(-2)2-4(kb+1)=-4kb>0,
∴方程x2﹣2x+kb+1=0有两个不等的实数根,故选A.
【点睛】
根的判别式
6、A
【解析】
【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.
【详解】作直径CG,连接OD、OE、OF、DG.
∵CG是圆的直径,
∴∠CDG=90°,则DG==8,
又∵EF=8,
∴DG=EF,
∴,
∴S扇形ODG=S扇形OEF,
∵AB∥CD∥EF,
∴S△OCD=S△ACD,S△OEF=S△AEF,
∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=π×52=,
故选A.
【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.
7、B
【解析】
根据题中的按键顺序确定出显示的数即可.
【详解】
解:根据题意得: =40,
=0.4,
0.42=0.04,
=0.4,
=40,
402=400,
400÷6=46…4,
则第400次为0.4.
故选B.
【点睛】
此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.
8、B
【解析】
由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.
【详解】
∵四边形ABCD是平行四边形,
∴∠D=∠B=52°,
由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
∴∠FED′=108°﹣72°=36°.
故选B.
【点睛】
本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.
9、C
【解析】
由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.
【详解】
∵∠A是公共角,
∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;
当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;
AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,
故选C.
10、A
【解析】
分析:根据多边形的内角和公式及外角的特征计算.
详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.
点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、(1,0);(﹣5,﹣2).
【解析】
本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.
【详解】
∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
设AG所在直线的解析式为y=kx+b(k≠0),
∴,解得.
∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
设AE所在直线的解析式为y=kx+b(k≠0),
,解得,
故此一次函数的解析式为…①,
同理,设CG所在直线的解析式为y=kx+b(k≠0),
,解得,
故此直线的解析式为…②
联立①②得
解得,故AE与CG的交点坐标是(-5,-2).
故答案为:(1,0)、(-5,-2).
12、
【解析】
先提公因式,再用平方差公式分解.
【详解】
解:
【点睛】
本题考查因式分解,掌握因式分解方法是关键.
13、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
考点:提公因式法和应用公式法因式分解.
14、3
【解析】
分析:因式分解,把已知整体代入求解.
详解:x2y+xy2=xy(x+y)=3.
点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).
(2)公式法:完全平方公式,平方差公式.
(3)十字相乘法.
因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.
15、1
【解析】
提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.
【详解】
8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.
故答案为:1(1x-y)1
【点睛】
此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.
16、作图见解析,
【解析】
解:如图,点M即为所求.连接AC、BC.由题意知:AB=4,BC=1.∵AB为圆的直径,∴∠ACB=90°,则AM=AC===,∴点M表示的数为.故答案为.
点睛:本题主要考查作图﹣尺规作图,解题的关键是熟练掌握尺规作图和圆周角定理及勾股定理.
三、解答题(共8题,共72分)
17、(1)n=2;y=x2﹣x﹣1;(2)p=;当t=2时,p有最大值;(3)6个,或;
【解析】
(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;
(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;
(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.
【详解】
解:
(1)∵直线l:y=x+m经过点B(0,﹣1),
∴m=﹣1,
∴直线l的解析式为y=x﹣1,
∵直线l:y=x﹣1经过点C(4,n),
∴n=×4﹣1=2,
∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),
∴,
解得,
∴抛物线的解析式为y=x2﹣x﹣1;
(2)令y=0,则x﹣1=0,
解得x=,
∴点A的坐标为(,0),
∴OA=,
在Rt△OAB中,OB=1,
∴AB===,
∵DE∥y轴,
∴∠ABO=∠DEF,
在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,
DF=DE•sin∠DEF=DE•=DE,
∴p=2(DF+EF)=2(+)DE=DE,
∵点D的横坐标为t(0<t<4),
∴D(t, t2﹣t﹣1),E(t, t﹣1),
∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,
∴p=×(﹣t2+2t)=﹣t2+t,
∵p=﹣(t﹣2)2+,且﹣<0,
∴当t=2时,p有最大值.
(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.
如图3中,设A1的横坐标为m,则O1的横坐标为m+,
∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,
解得m=,
如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,
∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,
解得m=,
∴旋转180°时点A1的横坐标为或
【点睛】
本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,解题时注意要分情况讨论.
18、(1)-1;(2)x1=2+,x2=2﹣
【解析】
(1)按照实数的运算法则依次计算即可;
(2)利用配方法解方程.
【详解】
(1)原式=﹣2﹣1+2×=﹣1;
(2)x2﹣4x+2=0,
x2﹣4x=﹣2,
x2﹣4x+4=﹣2+4,即(x﹣2)2=2,
∴x﹣2=±,
∴x1=2+,x2=2﹣.
【点睛】
此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.
19、(1)见解析;(2)BG=BC+CG=1.
【解析】
(1)利用正方形的性质,可得∠A=∠D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;
(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.
【详解】
(1)证明:∵ABCD为正方形,
∴AD=AB=DC=BC,∠A=∠D=90 °.
∵AE=ED,
∴AE:AB=1:2.
∵DF=DC,
∴DF:DE=1:2,
∴AE:AB=DF:DE,
∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,
∴ED∥BG,
∴△EDF∽△GCF,
∴ED:CG=DF:CF.
又∵DF=DC,正方形的边长为4,
∴ED=2,CG=6,
∴BG=BC+CG=1.
【点睛】
本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
20、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
21、(Ⅰ)68°(Ⅱ)56°
【解析】
(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
【详解】
(Ⅰ)∵四边形ABED 圆内接四边形,
∴∠A+∠DEB=180°,
∵∠CED+∠DEB=180°,
∴∠CED=∠A,
∵∠A=68°,
∴∠CED=68°.
(Ⅱ)连接AE.
∵DE=BD,
∴,
∴∠DAE=∠EAB=∠CAB=34°,
∵AB是直径,
∴∠AEB=90°,
∴∠AEC=90°,
∴∠C=90°﹣∠DAE=90°﹣34°=56°
【点睛】
本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
22、(1)80,12,28;(2)36°;(3)140人;(4)
【解析】
(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;
(2)用E组所占的百分比乘以360°得到α的值;
(3)利用样本估计整体,用700乘以A、B两组的频率和可估计体育测试成绩在A、B两个等级的人数;
(4)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.
【详解】
(1)24÷30%=80,
所以样本容量为80;
m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;
故答案为80,12,28;
(2)E等级对应扇形的圆心角α的度数=×360°=36°;
(3)700×=140,
所以估计体育测试成绩在A、B两个等级的人数共有140人;
(4)画树状图如下:
共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,
所以恰好抽到甲和乙的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.
23、(1)CD与圆O的位置关系是相切,理由详见解析;(2) AD=.
【解析】
(1)连接OC,求出OC和AD平行,求出OC⊥CD,根据切线的判定得出即可;
(2)连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.
【详解】
(1)CD与圆O的位置关系是相切,
理由是:连接OC,
∵OA=OC,
∴∠OCA=∠CAB,
∵∠CAB=∠CAD,
∴∠OCA=∠CAD,
∴OC∥AD,
∵CD⊥AD,
∴OC⊥CD,
∵OC为半径,
∴CD与圆O的位置关系是相切;
(2)连接BC,
∵AB是⊙O的直径,
∴∠BCA=90°,
∵圆O的半径为3,
∴AB=6,
∵∠CAB=30°,
∴
∵∠BCA=∠CDA=90°,∠CAB=∠CAD,
∴△CAB∽△DAC,
∴
∴
∴
【点睛】
本题考查了切线的性质和判定,圆周角定理,相似三角形的性质和判定,解直角三角形等知识点,能综合运用知识点进行推理是解此题的关键.
24、见解析
【解析】
(1)由菱形的性质得出∠B=∠D,AB=BC=DC=AD,由已知和三角形中位线定理证出AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,由(SAS)证明△BCE≌△DCF即可;
(2)由(1)得:AE=OE=OF=AF,证出四边形AEOF是菱形,再证出∠AEO=90°,四边形AEOF是正方形.
【详解】
(1)证明:∵四边形ABCD是菱形,
∴∠B=∠D,AB=BC=DC=AD,
∵点E,O,F分别为AB,AC,AD的中点,
∴AE=BE=DF=AF,OF=DC,OE=BC,OE∥BC,
在△BCE和△DCF中,,
∴△BCE≌△DCF(SAS);
(2)当AB⊥BC时,四边形AEOF是正方形,理由如下:
由(1)得:AE=OE=OF=AF,
∴四边形AEOF是菱形,
∵AB⊥BC,OE∥BC,
∴OE⊥AB,
∴∠AEO=90°,
∴四边形AEOF是正方形.
【点睛】
本题考查了全等三角形、菱形、正方形的性质,解题的关键是熟练的掌握菱形、正方形、全等三角形的性质.
江苏省无锡锡北片达标名校2022年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省无锡锡北片达标名校2022年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了单项式2a3b的次数是,-3的相反数是,下列图形中一定是相似形的是,下列说法错误的是等内容,欢迎下载使用。
江苏省无锡市江阴市长泾片2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省无锡市江阴市长泾片2021-2022学年中考数学全真模拟试题含解析,共17页。试卷主要包含了点A,若二元一次方程组的解为则的值为等内容,欢迎下载使用。
2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析: 这是一份2022年江苏省无锡市江阴市长泾片重点名校中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了反比例函数是y=的图象在,下列算式的运算结果正确的是等内容,欢迎下载使用。