2022届江苏省南通市崇川校中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )
A.4.995×1011 B.49.95×1010
C.0.4995×1011 D.4.995×1010
2.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为( )
A.48 B.35 C.30 D.24
3.下列关于统计与概率的知识说法正确的是( )
A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件
B.检测100只灯泡的质量情况适宜采用抽样调查
C.了解北京市人均月收入的大致情况,适宜采用全面普查
D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数
4.如图,AB∥CD,那么( )
A.∠BAD与∠B互补 B.∠1=∠2 C.∠BAD与∠D互补 D.∠BCD与∠D互补
5.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )
A. B. C. D.
6.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )
A.2:3 B.3:2 C.4:5 D.4:9
7.二次函数的图象如图所示,则下列各式中错误的是( )
A.abc>0 B.a+b+c>0 C.a+c>b D.2a+b=0
8.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A. B. C. D.
9.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )
A.200米 B.200米 C.220米 D.100米
10.下列运算正确的是( )
A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
二、填空题(共7小题,每小题3分,满分21分)
11.若一个圆锥的侧面展开图是一个半径为6cm,圆心角为120°的扇形,则该圆锥的侧面面积为______cm(结果保留π).
12.分解因式:m2n﹣2mn+n= .
13.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两
点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”
所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四
边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
14.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.
15.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm2,围成的圆锥的底面半径为15cm,则这个圆锥的母线长为_____cm.
16.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.
17.若关于x的方程x2-x+sinα=0有两个相等的实数根,则锐角α的度数为___.
三、解答题(共7小题,满分69分)
18.(10分)已知是上一点,.如图①,过点作的切线,与的延长线交于点,求的大小及的长;
如图②,为上一点,延长线与交于点,若,求的大小及的长.
19.(5分)如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
(1)求k的值.
(2)判断点A是否可与点B重合;
(3)若抛物线与BC有交点,求b的取值范围.
20.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
三角形数
1
3
6
10
15
21
a
…
正方形数
1
4
9
16
25
b
49
…
五边形数
1
5
12
22
C
51
70
…
(1)按照规律,表格中a=___,b=___,c=___.
(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.
21.(10分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.
(1)已知点A的坐标为,
①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;
②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.
(2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.
22.(10分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;
(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.
23.(12分)综合与实践﹣﹣﹣折叠中的数学
在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.
问题背景:
在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.
猜想与证明:
(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;
操作与画图:
(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);
操作与探究:
(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB交于点Q,连接MN 并延长MN交EF于点O.
求证:MO⊥EF 且MO平分EF;
(4)若AB=4,AD=4,在点E由点B运动到点C的过程中,点D'所经过的路径的长为 .
24.(14分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.
(1)求桥DC与直线AB的距离;
(2)现在从A地到达B地可比原来少走多少路程?
(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
【详解】
将499.5亿用科学记数法表示为:4.995×1.
故选D.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、D
【解析】
分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
3、B
【解析】
根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.
【详解】
解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;
B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;
C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;
D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;
故选B.
【点睛】
本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.
4、C
【解析】
分清截线和被截线,根据平行线的性质进行解答即可.
【详解】
解:∵AB∥CD,
∴∠BAD与∠D互补,即C选项符合题意;
当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,
故选项A、B、D都不合题意,
故选:C.
【点睛】
本题考查了平行线的性质,熟记性质并准确识图是解题的关键.
5、D
【解析】
根据题意列出关系式,去括号合并即可得到结果.
【详解】
解:设小长方形卡片的长为x,宽为y,
根据题意得:x+2y=a,
则图②中两块阴影部分周长和是:
2a+2(b-2y)+2(b-x)
=2a+4b-4y-2x
=2a+4b-2(x+2y)
=2a+4b-2a
=4b.
故选择:D.
【点睛】
此题考查了整式的加减,熟练掌握运算法则是解本题的关键.
6、A
【解析】
根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
【详解】
由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
∴△A′B′C′∽△ABC,
∵△A'B'C'与△ABC的面积的比4:9,
∴△A'B'C'与△ABC的相似比为2:3,
∴ ,
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
7、B
【解析】
根据二次函数的图象与性质逐一判断即可.
【详解】
解:由图象可知抛物线开口向上,
∴,
∵对称轴为,
∴,
∴,
∴,故D正确,
又∵抛物线与y轴交于y轴的负半轴,
∴,
∴,故A正确;
当x=1时,,
即,故B错误;
当x=-1时,
即,
∴,故C正确,
故答案为:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.
8、D
【解析】
A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.
9、D
【解析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【详解】
∵在热气球C处测得地面B点的俯角分别为45°,
∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°,
∴AC=2×100=200米,
∴AD==100米,
∴AB=AD+BD=100+100=100(1+)米,
故选D.
【点睛】
本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
10、D
【解析】
分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.
详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;
根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;
根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;
根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.
故选D.
点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、12π
【解析】
根据圆锥的侧面展开图是扇形可得,
,∴该圆锥的侧面面积为:12π,
故答案为12π.
12、n(m﹣1)1.
【解析】
先提取公因式n后,再利用完全平方公式分解即可
【详解】
m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.
故答案为n(m﹣1)1.
13、A
【解析】
试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;
②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;
③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.
故选A.
考点:1.反比例函数综合题;2.动点问题的函数图象.
14、100 mm1
【解析】
首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.
【详解】
根据三视图可得:上面的长方体长4mm,高4mm,宽1mm,
下面的长方体长8mm,宽6mm,高1mm,
∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).
故答案为100 mm1.
【点睛】
此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.
15、1
【解析】
设这个圆锥的母线长为xcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•15•x=90π,然后解方程即可.
【详解】
解:设这个圆锥的母线长为xcm,
根据题意得•2π•15•x=90π,
解得x=1,
即这个圆锥的母线长为1cm.
故答案为1.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
16、1
【解析】
由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.
【详解】
如图,
∵双曲线y=(x>0)经过点D,
∴S△ODF=k=,
则S△AOB=2S△ODF=,即OA•BE=,
∴OA•BE=1,
∵四边形ABCD是矩形,
∴OA=OB,
∴OB•BE=1,
故答案为:1.
【点睛】
本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.
17、30°
【解析】
试题解析:∵关于x的方程有两个相等的实数根,
∴
解得:
∴锐角α的度数为30°;
故答案为30°.
三、解答题(共7小题,满分69分)
18、(Ⅰ),PA=4;(Ⅱ),
【解析】
(Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度
(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解
【详解】
解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.
∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.
∴∠AOC=60°.
∵PC是○O的切线,OC为○O的半径,
∴PC⊥OC,即∠OCP=90°∴∠P=30°.
∴PO=2CO=8.
∴PA=PO-AO=PO-CO=4.
(Ⅱ)由(Ⅰ)知△OAC是等边三角形,
∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.
∵AQ=CQ,∴∠ACQ=∠QAC=75°
∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.
∴∠APC=∠AQC+∠QAO=45°.
如图②,过点C作CD⊥AB于点D.
∵△OAC是等边三角形,CD⊥AB于点D,
∴∠DCO=30°,AD=AO=CO=2.
∵∠APC=45°,∴∠DCQ=∠APC=45°
∴PD=CD
在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2
∴PD=CD=2
∴AP=AD+DP=2+2
【点睛】
此题主要考查圆的综合应用
19、(1)12;(2)点A不与点B重合;(3)
【解析】
(1)把B、C两点代入解析式,得到k=4(1﹣m)=6×(﹣m),求得m=﹣2,从而求得k的值;
(2)由抛物线解析式得到顶点A(b,b2),如果点A与点B重合,则有b=4,且b2=3,显然不成立;
(3)当抛物线经过点B(4,3)时,解得,b= ,抛物线右半支经过点B;当抛物线经过点C,解得,b=,抛物线右半支经过点C;从而求得b的取值范围为≤b≤.
【详解】
解:(1)∵B(4,1﹣m),C(6,﹣m)在反比例函数 的图象上,
∴k=4(1﹣m)=6×(﹣m),
∴解得m=﹣2,
∴k=4×[1﹣(﹣2)]=12;
(2)∵m=﹣2,∴B(4,3),
∵抛物线y=﹣x2+2bx=﹣(x﹣b)2+b2,
∴A(b,b2).
若点A与点B重合,则有b=4,且b2=3,显然不成立,
∴点A不与点B重合;
(3)当抛物线经过点B(4,3)时,有3=﹣42+2b×4,
解得,b=,
显然抛物线右半支经过点B;
当抛物线经过点C(6,2)时,有2=﹣62+2b×6,
解得,b=,
这时仍然是抛物线右半支经过点C,
∴b的取值范围为≤b≤.
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,解题的关键是学会用讨论的思想思考问题.
20、1 2 3 n2 n2 +x-n
【解析】
分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a的值;前5个“正方形数”分别是多少,从而得出b的值;前4个“正方形数”分别是多少,从而得出c的值;(2)、根据前面得出的一般性得出答案.
详解:(1)∵前6个“三角形数”分别是:1=、3=、6=、10=、15=、21=,
∴第n个“三角形数”是, ∴a=7×82=17×82=1.
∵前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52,
∴第n个“正方形数”是n2, ∴b=62=2.
∵前4个“正方形数”分别是:1=,5=,12=,22=,
∴第n个“五边形数”是n(3n−1)2n(3n−1)2, ∴c==3.
(2)第n个“正方形数”是n2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…,
∴第n个“五边形数”是n2+x-n.
点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
21、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或
【解析】
(1)①根据“和谐点”的定义即可解决问题;
②首先求出点C坐标,再利用待定系数法即可解决问题;
(2)分两种情形画出图形即可解决问题.
【详解】
(1)①如图1.
观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);
②如图2.
由图可知,B(5,3).
∵A(1,3),∴AB=3.
∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).
设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.
综上所述:直线AC的表达式是y=x+2或y=﹣x+3.
(2)分两种情况讨论:
①当点F在点E左侧时:
连接OD.则OD=,∴.
②当点F在点E右侧时:
连接OE,OD.
∵E(1,2),D(1,3),∴OE=,OD=,∴.
综上所述:或.
【点睛】
本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.
22、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;
(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
【详解】
(1)针对于抛物线,
令x=0,则,
∴,
令y=0,则,
解得,x=1或x=3,
∴,
综上所述:,,;
(2)由(1)知,,,
∵BM=FM,
∴,
∵,
∴直线AC的解析式为:,
联立抛物线解析式得:,
解得:或,
∴,
如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
∴,
解得:,
∴,
过H作l∥AC,
∴直线l的解析式为,
联立抛物线解析式,解得,
∴,
即:在直线AC下方的抛物线上不存在点P,使;
(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
设,,直线DE的解析式为,
联立直线DE的解析式与抛物线解析式联立,得,
∴,,
∵DG⊥x轴,
∴DG∥OM,
∴,
∴,
即,
∴,同理可得
∴,
∴,
即,
∴,
∴直线DE的解析式为,
∴直线DE必经过一定点.
【点睛】
本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
23、(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)
【解析】
(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;
(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;
(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;
(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.
【详解】
(1)△MEF是等腰三角形.
理由:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠MFE=∠CEF,
由折叠可得,∠MEF=∠CEF,
∴∠MFE=∠MEF,
∴ME=MF,
∴△MEF是等腰三角形.
(2)折痕EF和折叠后的图形如图所示:
(3)如图,
∵FD=BE,
由折叠可得,D'F=DF,
∴BE=D'F,
在△NC'Q和△NAP中,∠C'NQ=∠ANP,∠NC'Q=∠NAP=90°,
∴∠C'QN=∠APN,
∵∠C'QN=∠BQE,∠APN=∠D'PF,
∴∠BQE=∠D'PF,
在△BEQ和△D'FP中,
,
∴△BEQ≌△D'FP(AAS),
∴PF=QE,
∵四边形ABCD是矩形,
∴AD=BC,
∴AD﹣FD=BC﹣BE,
∴AF=CE,
由折叠可得,C'E=EC,
∴AF=C'E,
∴AP=C'Q,
在△NC'Q和△NAP中,
,
∴△NC'P≌△NAP(AAS),
∴AN=C'N,
在Rt△MC'N和Rt△MAN中,
,
∴Rt△MC'N≌Rt△MAN(HL),
∴∠AMN=∠C'MN,
由折叠可得,∠C'EF=∠CEF,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AFE=∠FEC,
∴∠C'EF=∠AFE,
∴ME=MF,
∴△MEF是等腰三角形,
∴MO⊥EF 且MO平分EF;
(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:
故其长为L=.
故答案为.
【点睛】
此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.
24、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.
【解析】
(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.
【详解】
解:(1)作CH⊥AB于点H,如图所示,
∵BC=12km,∠B=30°,
∴km,BH=km,
即桥DC与直线AB的距离是6.0km;
(2)作DM⊥AB于点M,如图所示,
∵桥DC和AB平行,CH=6km,
∴DM=CH=6km,
∵∠DMA=90°,∠B=45°,MH=EF=DC,
∴AD=km,AM=DM=6km,
∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,
即现在从A地到达B地可比原来少走的路程是4.1km.
【点睛】
做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.
江苏省南通市崇川区八一中学2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省南通市崇川区八一中学2021-2022学年中考数学考前最后一卷含解析,共22页。试卷主要包含了答题时请按要求用笔,函数中,x的取值范围是,下列各式等内容,欢迎下载使用。
2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析: 这是一份2022年广东省汕头市潮南区博崇实验校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
2022届四川雅安天立校中考考前最后一卷数学试卷含解析: 这是一份2022届四川雅安天立校中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。