|试卷下载
终身会员
搜索
    上传资料 赚现金
    江苏省江都国际校2022年中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    江苏省江都国际校2022年中考数学考前最后一卷含解析01
    江苏省江都国际校2022年中考数学考前最后一卷含解析02
    江苏省江都国际校2022年中考数学考前最后一卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省江都国际校2022年中考数学考前最后一卷含解析

    展开
    这是一份江苏省江都国际校2022年中考数学考前最后一卷含解析,共19页。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )

    A.甲 B.乙 C.丙 D.丁
    2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是(  )

    A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠4
    3.下列计算正确的是(  )
    A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2•a4=a6
    4.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为(  )
    A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010
    5.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )

    A.10,15 B.13,15 C.13,20 D.15,15
    6.某车间20名工人日加工零件数如表所示:
    日加工零件数
    4
    5
    6
    7
    8
    人数
    2
    6
    5
    4
    3
    这些工人日加工零件数的众数、中位数、平均数分别是(  )
    A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6
    7.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是(  )
    A. B. C. D.
    8.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是(  )
    A. B. C. D.
    9.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是(  )

    A.①② B.①③④ C.①②③⑤ D.①②③④⑤
    10.在实数,,,中,其中最小的实数是(  )
    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.二次函数的图象与x轴有____个交点 .
    12.已知图中Rt△ABC,∠B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC时,旋转角度α 的值为_________,

    13.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .

    14.如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为____.

    15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_______.

    16.如图,在△ABC中,AB=AC,以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD,若∠A=32°,则∠CDB的大小为_____度.

    17.如果梯形的中位线长为6,一条底边长为8,那么另一条底边长等于__________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:
    (1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.
    (2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.
    (3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?

    19.(5分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)
    (Ⅰ)求发射台与雷达站之间的距离;
    (Ⅱ)求这枚火箭从到的平均速度是多少(结果精确到0.01)?

    20.(8分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.

    21.(10分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
    22.(10分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.

    23.(12分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
    (1)求x的取值范围;
    (2)若∠CPN=60°,求x的值;
    (3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).

    24.(14分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一条街上,小明买了一碗元宵,共5个,其中黑芝麻馅两个,五仁馅两个,桂花馅一个,当元宵端上来的时候,看着五个大小、色泽一模一样的元宵,小明的爸爸问了小明两个问题:
    (1)小明吃到第一个元宵是五仁馅的概率是多少?请你帮小明直接写出答案。
    (2)小明吃的前两个元宵是同一种馅的元宵概率是多少?请你利用你列表或树状图帮小明求出概率。



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;
    【详解】
    ∵五边形ABCDE是正五边形,△ABG是等边三角形,
    ∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,
    ∴DG垂直平分线段AB,
    ∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,
    ∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,
    ∴∠CDF=∠EDF=∠CFD=72°,
    ∴△CDF是等腰三角形.
    故丁、甲、丙正确.
    故选B.
    【点睛】
    本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    2、D
    【解析】
    试题分析:A.∵∠1=∠3,∴a∥b,故A正确;
    B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正确;
    C. ∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正确;
    D.∠3和∠4是对顶角,不能判断a与b是否平行,故D错误.
    故选D.
    考点:平行线的判定.
    3、D
    【解析】
    根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依次计算后即可解答.
    【详解】
    ∵3a﹣2a=a,∴选项A不正确;
    ∵a2+a5≠a7,∴选项B不正确;
    ∵(ab)3=a3b3,∴选项C不正确;
    ∵a2•a4=a6,∴选项D正确.
    故选D.
    【点睛】
    本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.
    4、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:1800000000=1.8×109,
    故选:C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、D
    【解析】
    将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
    【详解】
    将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
    【点睛】
    本题考查中位数和众数的概念,熟记概念即可快速解答.
    6、D
    【解析】
    5出现了6次,出现的次数最多,则众数是5;
    把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6;
    平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6;
    故答案选D.
    7、A
    【解析】
    ∵Rt△ABC中,∠C=90°,sinA=,
    ∴cosA=,
    ∴∠A+∠B=90°,
    ∴sinB=cosA=.
    故选A.
    8、B
    【解析】
    考点:概率公式.
    专题:计算题.
    分析:根据概率的求法,找准两点:
    ①全部情况的总数;
    ②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,
    故概率为2/ 6 ="1/" 3 .
    故选B.
    点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .
    9、C
    【解析】
    根据二次函数的性质逐项分析可得解.
    【详解】
    解:由函数图象可得各系数的关系:a<0,b<0,c>0,
    则①当x=1时,y=a+b+c<0,正确;
    ②当x=-1时,y=a-b+c>1,正确;
    ③abc>0,正确;
    ④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
    ⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
    故所有正确结论的序号是①②③⑤.
    故选C
    10、B
    【解析】
    由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.
    【详解】
    解:∵0,-2,1,中,-2<0<1<,
    ∴其中最小的实数为-2;
    故选:B.
    【点睛】
    本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.

    二、填空题(共7小题,每小题3分,满分21分)
    11、2
    【解析】
    【分析】根据一元二次方程x2+mx+m-2=0的根的判别式的符号进行判定二次函数y=x2+mx+m-2的图象与x轴交点的个数.
    【详解】二次函数y=x2+mx+m-2的图象与x轴交点的纵坐标是零,
    即当y=0时,x2+mx+m-2=0,
    ∵△=m2-4(m-2)=(m-2)2+4>0,
    ∴一元二次方程x2+mx+m-2=0有两个不相等是实数根,
    即二次函数y=x2+mx+m-2的图象与x轴有2个交点,
    故答案为:2.
    【点睛】本题考查了抛物线与x轴的交点.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.
    △=b2-4ac决定抛物线与x轴的交点个数.
    △=b2-4ac>0时,抛物线与x轴有2个交点;
    △=b2-4ac=0时,抛物线与x轴有1个交点;
    △=b2-4ac<0时,抛物线与x轴没有交点.
    12、15或255°
    【解析】
    如下图,设直线DC′与AB相交于点E,
    ∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,
    ∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,
    ∴AE=AD,
    又∵AD=AB,AC′=AC,
    ∴AE=AB=AC=AC′,
    ∴∠C′=30°,
    ∴∠EAC′=60°,
    ∴∠CAC′=60°-45°=15°, 即当DC′∥BC时,旋转角=15°;
    同理,当DC′′∥BC时,旋转角=180°-45°-60°=255°;
    综上所述,当旋转角=15°或255°时,DC′//BC.
    故答案为:15°或255°.

    13、20°
    【解析】
    根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC﹣∠PAB得到∠BAC的度数.
    【详解】
    解:∵PA是⊙O的切线,AC是⊙O的直径,
    ∴∠PAC=90°.
    ∵PA,PB是⊙O的切线,
    ∴PA=PB.
    ∵∠P=40°,
    ∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,
    ∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.
    故答案为20°.
    【点睛】
    本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.
    14、6
    【解析】
    试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,
    ∴AE=CE,
    设AB=AO=OC=x,
    则有AC=2x,∠ACB=30°,
    在Rt△ABC中,根据勾股定理得:BC=x,
    在Rt△OEC中,∠OCE=30°,
    ∴OE=EC,即BE=EC,
    ∵BE=3,
    ∴OE=3,EC=6,
    则AE=6
    故答案为6.
    15、(3,2).
    【解析】
    过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.
    【详解】
    过点P作PD⊥x轴于点D,连接OP,

    ∵A(6,0),PD⊥OA,
    ∴OD=OA=3,
    在Rt△OPD中 ∵OP= OD=3,
    ∴PD=2
    ∴P(3,2) .
    故答案为(3,2).
    【点睛】
    本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
    16、1
    【解析】
    根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.
    【详解】
    ∵AB=AC,∠A=32°,
    ∴∠ABC=∠ACB=74°,
    又∵BC=DC,
    ∴∠CDB=∠CBD=∠ACB=1°,
    故答案为1.
    【点睛】
    本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.
    17、4.
    【解析】
    只需根据梯形的中位线定理“梯形的中位线等于两底和的一半”,进行计算.
    【详解】
    解:根据梯形的中位线定理“梯形的中位线等于两底和的一半”,则另一条底边长.
    故答案为:4
    【点睛】
    本题考查梯形中位线,用到的知识点为:梯形的中位线=(上底+下底)

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)当t=3时,△AEQ的面积最大为cm2;(3)(3,0)或(6,3)或(0,3)
    【解析】
    (1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即 可解决问题;
    【详解】
    (1)如图①中,
    ∵C(6,0),
    ∴BC=6
    在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
    由题意知,当0<t<6时,AD=BE=CF=t,
    ∴BD=CE=AF=6﹣t,
    ∴△ADF≌△CFE≌△BED(SAS),
    ∴EF=DF=DE,
    ∴△DEF是等边三角形,
    ∴不论t如何变化,△DEF始终为等边三角形;

    (2)如图②中,作AH⊥BC于H,则AH=AB•sin60°=3,

    ∴S△AEC=×3×(6﹣t)=,
    ∵EQ∥AB,
    ∴△CEQ∽△ABC,
    ∴=()2=,即S△CEQ=S△ABC=×9=,
    ∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
    ∵a=﹣<0,
    ∴抛物线开口向下,有最大值,
    ∴当t=3时,△AEQ的面积最大为cm2,
    (3)如图③中,由(2)知,E点为BC的中点,线段EQ为△ABC的中位线,

    当AD为菱形的边时,可得P1(3,0),P3(6,3),
    当AD为对角线时,P2(0,3),
    综上所述,满足条件的点P坐标为(3,0)或(6,3)或(0,3).
    【点睛】
    本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.
    19、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
    【解析】
    (Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
    【详解】
    (Ⅰ)在中,,≈0.74,
    ∴.
    答:发射台与雷达站之间的距离约为.
    (Ⅱ)在中,,
    ∴.
    ∵在中,,
    ∴.
    ∴.
    答:这枚火箭从到的平均速度大约是.
    【点睛】
    本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
    20、 (1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.
    【解析】
    (1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.
    【详解】
    解:(1)△APD≌△CPD.
    理由:∵四边形ABCD是菱形,
    ∴AD=CD,∠ADP=∠CDP.
    又∵PD=PD,∴△APD≌△CPD(SAS).
    (2)∵△APD≌△CPD,
    ∴∠DAP=∠DCP,
    ∵CD∥AB,
    ∴∠DCF=∠DAP=∠CFB,
    又∵∠FPA=∠FPA,
    ∴△APE∽△FPA(两组角相等则两三角形相似).
    (3)猜想:PC2=PE•PF.
    理由:∵△APE∽△FPA,
    ∴即PA2=PE•PF.
    ∵△APD≌△CPD,
    ∴PA=PC.
    ∴PC2=PE•PF.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.
    21、(1)不可能事件;(2).
    【解析】
    试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.
    试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;
    (2)树状图法

    即小张同学得到猪肉包和油饼的概率为.
    考点:列表法与树状图法.
    22、(1)相切;(2).
    【解析】
    试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.
    试题解析:(1)MN是⊙O切线.
    理由:连接OC.
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
    ∴∠BCM=∠BOC,
    ∵∠B=90°,
    ∴∠BOC+∠BCO=90°,
    ∴∠BCM+∠BCO=90°,
    ∴OC⊥MN,
    ∴MN是⊙O切线.
    (2)由(1)可知∠BOC=∠BCM=60°,
    ∴∠AOC=120°,
    在RT△BCO中,OC=OA=4,∠BCO=30°,
    ∴BO=OC=2,BC=2
    ∴S阴=S扇形OAC﹣S△OAC=.

    考点:直线与圆的位置关系;扇形面积的计算.
    23、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.
    【解析】
    (1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;
    (1)根据等边三角形的判定和性质即可求解;
    (3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.
    【详解】
    (1)∵BC=1分米,AC=CN+PN=11分米,
    ∴AB=AC﹣BC=10分米,
    ∴x的取值范围是:0≤x≤10;
    (1)∵CN=PN,∠CPN=60°,
    ∴△PCN是等边三角形,
    ∴CP=6分米,
    ∴AP=AC﹣PC=6分米,
    即当∠CPN=60°时,x=6;
    (3)连接MN、EF,分别交AC于B、H,

    ∵PM=PN=CM=CN,
    ∴四边形PNCM是菱形,
    ∴MN与PC互相垂直平分,AC是∠ECF的平分线,
    PB==6-,
    在Rt△MBP中,PM=6分米,
    ∴MB1=PM1﹣PB1=61﹣(6﹣x)1=6x﹣x1.
    ∵CE=CF,AC是∠ECF的平分线,
    ∴EH=HF,EF⊥AC,
    ∵∠ECH=∠MCB,∠EHC=∠MBC=90°,
    ∴△CMB∽△CEH,
    ∴=,
    ∴,
    ∴EH1=9•MB1=9•(6x﹣x1),
    ∴y=π•EH1=9π(6x﹣x1),
    即y=﹣πx1+54πx.
    【点睛】
    此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.
    24、(1) ; (2) .
    【解析】
    (1)根据概率=所求情况数与总情况数之比代入解得即可.
    (2)将小明吃到的前两个元宵的所有情况列表出来即可求解.
    【详解】
    (1)5个元宵中,五仁馅的有2个,故小明吃到的第一个元宵是五仁馅的概率是;
    (2)小明吃到的前两个元宵的所有情况列表如下(记黑芝麻馅的两个分别为、,五仁馅的两个分别为、,桂花馅的一个为c):

    由图可知,共有20种等可能的情况,其中小明吃到的前两个元宵是同一种馅料的情况有4种,故小明吃到的前两个元宵是同一种馅料的概率是.
    【点睛】
    本题考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求:情况数与总情况数之比.

    相关试卷

    江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了一、单选题,下列运算正确的是等内容,欢迎下载使用。

    2022届江苏省扬州市江都区五校联谊重点中学中考考前最后一卷数学试卷含解析: 这是一份2022届江苏省扬州市江都区五校联谊重点中学中考考前最后一卷数学试卷含解析,共20页。

    2022届江苏省扬州市江都区国际校中考考前最后一卷数学试卷含解析: 这是一份2022届江苏省扬州市江都区国际校中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了下列各数中,为无理数的是,计算3×,已知关于x的一元二次方程等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map