2022届湖南省常德市澧县、临澧县重点中学十校联考最后数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.下面的图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
2.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是 .
A. B. C. D.
3.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元
4.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).
…
…
…
…
A.只有一个交点 B.有两个交点,且它们分别在轴两侧
C.有两个交点,且它们均在轴同侧 D.无交点
5.化简的结果为( )
A.﹣1 B.1 C. D.
6.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )
A. B. C. D.
7.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是( )
A.2k-2 B.k-1 C.k D.k+1
8.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( )
A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×108
9.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是( )
A.3 B.﹣3 C.6 D.﹣6
10.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是( )
A.25° B.35° C.45° D.65°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为__________.
12.计算:()•=__.
13.已知x1,x2是方程x2-3x-1=0的两根,则=______.
14.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.
15.已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_____________.
16.若,,则代数式的值为__________.
三、解答题(共8题,共72分)
17.(8分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
x
0
1
2
3
4
5
6
y
5.2
4.2
4.6
5.9
7.6
9.5
说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.
18.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)
19.(8分)计算:(π﹣3.14)0+|﹣1|﹣2sin45°+(﹣1)1.
20.(8分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
21.(8分)按要求化简:(a﹣1)÷,并选择你喜欢的整数a,b代入求值.
小聪计算这一题的过程如下:
解:原式=(a﹣1)÷…①
=(a﹣1)•…②
=…③
当a=1,b=1时,原式=…④
以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;
还有第_____步出错(填序号),原因:_____.
请你写出此题的正确解答过程.
22.(10分)计算:﹣(﹣2)2+|﹣3|﹣20180×
23.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为________人,m=________,n=________;
(2)补全条形统计图;
(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
24.已知关于x的方程x2﹣6mx+9m2﹣9=1.
(1)求证:此方程有两个不相等的实数根;
(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】试题解析:A. 是轴对称图形但不是中心对称图形
B.既是轴对称图形又是中心对称图形;
C.是中心对称图形,但不是轴对称图形;
D.是轴对称图形不是中心对称图形;
故选B.
2、D
【解析】
根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.
【详解】
解:∵数据x1,x2,x3,x4,x5的平均数是2,
∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;
∵数据x1,x2,x3,x4,x5的方差为,
∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,
∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,
故选D.
【点睛】
本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.
3、D
【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
【详解】
解:A、∵200÷10=20(元/本),
∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
B、∵200+16×(30﹣10)=520(元),
∴a=520,B选项正确;
D、∵200×2﹣200﹣16×(20﹣10)=40(元),
∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
故选D.
【点睛】
考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
4、B
【解析】
根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.
【详解】
解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上
则该二次函数的图像与轴有两个交点,且它们分别在轴两侧
故选B.
【点睛】
本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.
5、B
【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
【详解】
解:.
故选B.
6、B
【解析】
根据俯视图是从上往下看的图形解答即可.
【详解】
从上往下看到的图形是:
.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
7、A
【解析】
先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.
【详解】
∵0<k<1,
∴k-1<0,
∴此函数是减函数,
∵1≤x≤1,
∴当x=1时,y最小=1(k-1)+1=1k-1.
故选A.
【点睛】
本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.
8、B
【解析】
根据科学记数法进行解答.
【详解】
1315万即13510000,用科学记数法表示为1.351×107.故选择B.
【点睛】
本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).
9、D
【解析】
试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.
考点:反比例函数系数k的几何意义.
10、A
【解析】
如图,过点C作CD∥a,再由平行线的性质即可得出结论.
【详解】
如图,过点C作CD∥a,则∠1=∠ACD,
∵a∥b,
∴CD∥b,
∴∠2=∠DCB,
∵∠ACD+∠DCB=90°,
∴∠1+∠2=90°,
又∵∠1=65°,
∴∠2=25°,
故选A.
【点睛】
本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、4
【解析】
首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.
【详解】
在Rt△AOB中,∵∠ABO=30°,AO=1,
∴AB=2,BO=
①当点P从O→B时,如图1、图2所示,点Q运动的路程为,
②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°
∵∠ABO=30°
∴∠BAO=60°
∴∠OQD=90°﹣60°=30°
∴AQ=2AC,
又∵CQ=,
∴AQ=2
∴OQ=2﹣1=1,则点Q运动的路程为QO=1,
③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,
④当点P从A→O时,点Q运动的路程为AO=1,
∴点Q运动的总路程为:+1+2﹣+1=4
故答案为4.
考点:解直角三角形
12、1
【解析】
试题分析:首先进行通分,然后再进行因式分解,从而进行约分得出答案.原式=.
13、﹣1.
【解析】
试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
14、CD的中点
【解析】
根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.
【详解】
∵△ADE旋转后能与△BEC重合,
∴△ADE≌△BEC,
∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,
∴∠AED+∠BEC=90°,
∴∠DEC=90°,
∴△DEC是等腰直角三角形,
∴D与E,E与C是对应顶点,
∵CD的中点到D,E,C三点的距离相等,
∴旋转中心是CD的中点,
故答案为:CD的中点.
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.
15、
【解析】
分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.
详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),
∴=1,即b2-4ac=-20a,
∵ax2+bx+c=k有两个不相等的实数根,
∴方程ax2+bx+c-k=0的判别式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0
∵抛物线开口向下
∴a<0
∴1-k>0
∴k<1.
故答案为k<1.
点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.
16、-12
【解析】
分析:对所求代数式进行因式分解,把,,代入即可求解.
详解:,,
,
故答案为:
点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键.
三、解答题(共8题,共72分)
17、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
【解析】
(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【详解】
(1)根据题意,作图得,y=4.5故答案为:4.5
(2)根据数据画图得
(3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
【点睛】
本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
18、(70﹣10)m.
【解析】
过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解得到DF的长度;通过解得到CE的长度,则
【详解】
如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.
则DE=BF=CH=10m,
在中,∵AF=80m−10m=70m,
∴DF=AF=70m.
在中,∵DE=10m,
∴
∴
答:障碍物B,C两点间的距离为
19、
【解析】
直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.
【详解】
原式
.
【点睛】
考核知识点:三角函数混合运算.正确计算是关键.
20、(1);(2)
【解析】
(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
【详解】
解:(1)画树状图得:
共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
所以都选择A通道通过的概率为,
故答案为:;
(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
∴至少有两辆汽车选择B通道通过的概率为.
【点睛】
考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
21、①, 运算顺序错误; ④, a等于1时,原式无意义.
【解析】
由于乘法和除法是同级运算,应当按照从左向右的顺序计算,①运算顺序错误;④当a=1时,等于0,原式无意义.
【详解】
①运算顺序错误;
故答案为①,运算顺序错误;
④当a=1时,等于0,原式无意义.
故答案为a等于1时,原式无意义.
当时,原式
【点睛】
本题考查了分式的化简求值,注意运算顺序和分式有意义的条件.
22、﹣1
【解析】
根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
【详解】
原式=﹣1+3﹣1×3=﹣1.
【点睛】
本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
23、 (1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
【解析】
(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.
【详解】
试题分析:
试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,
(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,
补全条形统计图如下:
(3)100000×32%=32000(人),
答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
24、 (1)见解析;(2)m=2
【解析】
(1)根据一元二次方程根的判别式进行分析解答即可;
(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.
【详解】
(1)∵在方程x2﹣6mx+9m2﹣9=1中,△=(﹣6m)2﹣4(9m2﹣9)=26m2﹣26m2+26=26>1.
∴方程有两个不相等的实数根;
(2)关于x的方程:x2﹣6mx+9m2﹣9=1可化为:[x﹣(2m+2)][x﹣(2m﹣2)]=1,
解得:x=2m+2和x=2m-2,
∵2m+2>2m﹣2,x1>x2,
∴x1=2m+2,x2=2m﹣2,
又∵x1=2x2,
∴2m+2=2(2m﹣2)解得:m=2.
【点睛】
(1)熟知“一元二次方程根的判别式:在一元二次方程中,当时,原方程有两个不相等的实数根,当时,原方程有两个相等的实数根,当时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x的方程x2﹣6mx+9m2﹣9=1的两个根是解答第2小题的关键.
云南省重点中学2022年十校联考最后数学试题含解析: 这是一份云南省重点中学2022年十校联考最后数学试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,如图,与∠1是内错角的是,下列各式中,正确的是等内容,欢迎下载使用。
盐城市重点中学2022年十校联考最后数学试题含解析: 这是一份盐城市重点中学2022年十校联考最后数学试题含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,函数中,x的取值范围是,二次函数y=,函数y=的自变量x的取值范围是,tan45º的值为,已知点P等内容,欢迎下载使用。
安徽淮南寿县重点中学2022年十校联考最后数学试题含解析: 这是一份安徽淮南寿县重点中学2022年十校联考最后数学试题含解析,共17页。试卷主要包含了答题时请按要求用笔,已知x=2﹣,则代数式等内容,欢迎下载使用。