


2022届河南省驻马店市驿城区胡庙乡第一中学中考五模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.计算(-ab2)3÷(-ab)2的结果是( )
A.ab4 B.-ab4 C.ab3 D.-ab3
2.下列方程中,没有实数根的是( )
A. B.
C. D.
3.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( )
A.在⊙O内 B.在⊙O上
C.在⊙O外 D.不能确定
4.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是( )
A.3 B.4 C.5 D.6
5.下列方程中有实数解的是( )
A.x4+16=0 B.x2﹣x+1=0
C. D.
6.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为( )
A.﹣2 B.﹣1 C.1 D.2
7.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则( )
A.a>0且4a+b=0 B.a<0且4a+b=0
C.a>0且2a+b=0 D.a<0且2a+b=0
8.估计的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
9.的算术平方根是( )
A.9 B.±9 C.±3 D.3
10.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为( )
A. B. C. D.4
二、填空题(共7小题,每小题3分,满分21分)
11.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.
12.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.
13.在△ABC中,AB=AC,∠A=36°,DE是AB的垂直平分线,DE交AB于点D,交AC于点E,连接BE.下列结论①BE平分∠ABC;②AE=BE=BC;③△BEC周长等于AC+BC;④E点是AC的中点.其中正确的结论有_____(填序号)
14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示)
15.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).
16.如图,在正六边形ABCDEF中,AC于FB相交于点G,则值为_____.
17.计算:(a2)2=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.
(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长.
19.(5分)如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).
20.(8分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
x
﹣1
0
1
ax2
…
…
1
ax2+bx+c
7
2
…
(1)求抛物线y=ax2+bx+c的表达式
(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.
21.(10分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.
(1)求二次函数的解析式;
(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
22.(10分)如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.当α=125°时,∠ABC= °;求证:AC=CE;若△ABC的外心在其内部,直接写出α的取值范围.
23.(12分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?
24.(14分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志.小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°.已知AB⊥BD,CD⊥BD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°≈0.61,cos37.5°≈0.79,tan37.5°≈0.77)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
(-ab2)3÷(-ab)2
=-a3b6÷a2b2
=-ab4,
故选B.
2、B
【解析】
分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
【详解】
解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
故选:B.
【点睛】
本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
3、B.
【解析】
试题解析:∵OP=5,
∴根据点到圆心的距离等于半径,则知点在圆上.
故选B.
考点:1.点与圆的位置关系;2.坐标与图形性质.
4、C
【解析】
根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
【详解】
解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
∴BE=CE=BC=2,
又∵D是AB中点,
∴BD=AB=,
∴DE是△ABC的中位线,
∴DE=AC=,
∴△BDE的周长为BD+DE+BE=++2=5,
故选C.
【点睛】
本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
5、C
【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.
【详解】
A.中△=02﹣4×1×16=﹣64<0,方程无实数根;
B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;
C.x=﹣1是方程的根;
D.当x=1时,分母x2-1=0,无实数根.
故选:C.
【点睛】
本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.
6、C
【解析】
先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.
【详解】
a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.
故选C.
【点睛】
本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.
7、A
【解析】
由图像经过点(0,m)、(4、m)可知对称轴为x=2,由n<m知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.
【详解】
∵图像经过点(0,m)、(4、m)
∴对称轴为x=2,
则,
∴4a+b=0
∵图像经过点(1,n),且n<m
∴抛物线的开口方向向上,
∴a>0,
故选A.
【点睛】
此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.
8、C
【解析】
∵ ,
∴.
即的值在6和7之间.
故选C.
9、D
【解析】
根据算术平方根的定义求解.
【详解】
∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算术平方根是1.
即的算术平方根是1.
故选:D.
【点睛】
考核知识点:算术平方根.理解定义是关键.
10、A
【解析】
试题分析:由题意易知:∠CAB=41°,∠ACD=30°.
若旋转角度为11°,则∠ACO=30°+11°=41°.
∴∠AOC=180°-∠ACO-∠CAO=90°.
在等腰Rt△ABC中,AB=4,则AO=OC=2.
在Rt△AOD1中,OD1=CD1-OC=3,
由勾股定理得:AD1=.
故选A.
考点: 1.旋转;2.勾股定理.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
【详解】
解:
连接AC
AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
∴AC=CB,BC2+AC2=AB2,
∴∠BCA=90°,
∴∠ABC=45°,
∴∠ABC的正弦值为.
故答案为:.
【点睛】
此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.
12、k>3
【解析】
分析:根据函数图象所经过的象限列出不等式组通过解该不等式组可以求得k的取值范围.
详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,
∴
解得,k>3.
故答案是:k>3.
点睛:此题主要考查了一次函数图象,一次函数的图象有四种情况:
①当时,函数的图象经过第一、二、三象限;
②当时,函数的图象经过第一、三、四象限;
③当时,函数的图象经过第一、二、四象限;
④当时,函数的图象经过第二、三、四象限.
13、①②③
【解析】
试题分析:根据三角形内角和定理求出∠ABC、∠C的度数,根据线段垂直平分线的性质得到EA=EB,根据等腰三角形的判定定理和三角形的周长公式计算即可.
解:∵AB=AC,∠A=36°,
∴∠ABC=∠C=72°,
∵DE是AB的垂直平分线,
∴EA=EB,
∴∠EBA=∠A=36°,
∴∠EBC=36°,
∴∠EBA=∠EBC,
∴BE平分∠ABC,①正确;
∠BEC=∠EBA+∠A=72°,
∴∠BEC=∠C,
∴BE=BC,
∴AE=BE=BC,②正确;
△BEC周长=BC+CE+BE=BC+CE+EA=AC+BC,③正确;
∵BE>EC,AE=BE,
∴AE>EC,
∴点E不是AC的中点,④错误,
故答案为①②③.
考点:线段垂直平分线的性质;等腰三角形的判定与性质.
14、(2n,1)
【解析】
试题分析:根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可:
由图可知,n=1时,4×1+1=5,点A5(2,1),
n=2时,4×2+1=9,点A9(4,1),
n=3时,4×3+1=13,点A13(6,1),
∴点A4n+1(2n,1).
15、4﹣π
【解析】
由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角边AC与BC的长,继而求得△ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案.
【详解】
解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,
∴AC=BC=AB•sin45°=AB=2,
∴S△ABC=AC•BC=4,
∵点D为AB的中点,
∴AD=BD=AB=2,
∴S扇形EAD=S扇形FBD=×π×22=π,
∴S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.
故答案为:4﹣π.
【点睛】
此题考查了等腰直角三角形的性质以及扇形的面积.注意S阴影=S△ABC﹣S扇形EAD﹣S扇形FBD.
16、.
【解析】
由正六边形的性质得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性质得出∠ABF=∠BAC=∠BCA=30°,证出AG=BG,∠CBG=90°,由含30°角的直角三角形的性质得出CG=2BG=2AG,即可得出答案.
【详解】
∵六边形ABCDEF是正六边形,
∴AB=BC=AF,∠ABC=∠BAF=120°,
∴∠ABF=∠BAC=∠BCA=30°,
∴AG=BG,∠CBG=90°,
∴CG=2BG=2AG,
∴=;
故答案为:.
【点睛】
本题考查了正六边形的性质、等腰三角形的判定、含30°角的直角三角形的性质等知识;熟练掌握正六边形的性质和含30°角的直角三角形的性质是解题的关键.
17、a1.
【解析】
根据幂的乘方法则进行计算即可.
【详解】
故答案为
【点睛】
考查幂的乘方,掌握运算法则是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)证明过程见解析;(2)1.
【解析】
试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.
试题解析:(1)连接OD, ∵CD是⊙O切线, ∴∠ODC=90°, 即∠ODB+∠BDC=90°,
∵AB为⊙O的直径, ∴∠ADB=90°, 即∠ODB+∠ADO=90°, ∴∠BDC=∠ADO,
∵OA=OD, ∴∠ADO=∠A, ∴∠BDC=∠A;
(2)∵CE⊥AE, ∴∠E=∠ADB=90°, ∴DB∥EC, ∴∠DCE=∠BDC, ∵∠BDC=∠A, ∴∠A=∠DCE,
∵∠E=∠E, ∴△AEC∽△CED, ∴, ∴EC2=DE•AE, ∴11=2(2+AD), ∴AD=1.
考点:(1)切线的性质;(2)相似三角形的判定与性质.
19、
【解析】
过点C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根据AD+BD=AB列方程求解可得.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,
∵,
∴AD====x,
由AD+BD=AB可得x+x=10,
解得:x=5﹣5,
答:飞机飞行的高度为(5﹣5)km.
20、 (1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.
【解析】
(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
(1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.
【详解】
(1)当x=1时,y=ax2=1,
解得:a=1;
将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
,解得:,
∴抛物线的表达式为y=x2﹣4x+2;
(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,
∴点A到抛物线的距离与点B到抛物线的距离比为2:1.
∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
∴点B到抛物线的距离为1,
∴点B的横坐标为1+2=5,
∴点B的坐标为(5,7).
(1)∠BAD和∠DCO互补,理由如下:
当x=0时,y=x2﹣4x+2=2,
∴点A的坐标为(0,2),
∵y=x2﹣4x+2=(x﹣2)2﹣2,
∴点D的坐标为(2,﹣2).
过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
设直线BD的表达式为y=mx+n(m≠0),
将B(5,7)、D(2,﹣2)代入y=mx+n,
,解得:,
∴直线BD的表达式为y=1x﹣2.
当y=2时,有1x﹣2=2,
解得:x=,
∴点N的坐标为(,2).
∵A(0,2),B(5,7),D(2,﹣2),
∴AB=5,BD=1,BN=,
∴==.
又∵∠ABD=∠NBA,
∴△ABD∽△NBA,
∴∠ANB=∠DAB.
∵∠ANB+∠AND=120°,
∴∠DAB+∠DCO=120°,
∴∠BAD和∠DCO互补.
【点睛】
本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.
21、(1);(2)P点坐标为, ;(3) 或或或.
【解析】
(1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
【详解】
解:(1)∵A(-1,0),在上,
,解得,
∴二次函数的解析式为;
(2)在中,令可得,解得或,
,且,
∴经过、两点的直线为,
设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,
,
∴当时,四边形的面积最大,此时P点坐标为,
∴四边形的最大面积为;
(3),
∴对称轴为,
∴可设点坐标为,
,,
,,,
为直角三角形,
∴有、和三种情况,
①当时,则有,即,解得或,此时点坐标为或;
②当时,则有,即,解得,此时点坐标为;
③当时,则有,即,解得,此时点坐标为;
综上可知点的坐标为或或或.
【点睛】
本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
22、(1)125;(2)详见解析;(3)45°<α<90°.
【解析】
(1)利用四边形内角和等于360度得:∠B+∠ADC=180°,而∠ADC+∠EDC=180°,即可求解;
(2)证明△ABC≌△EDC(AAS)即可求解;
(3)当∠ABC=α=90°时,△ABC的外心在其直角边上,∠ABC=α>90°时,△ABC的外心在其外部,即可求解.
【详解】
(1)在四边形BADC中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
∴∠ABC=∠PDC=α=125°,
故答案为125;
(2)∠ECD+∠DCA=90°,∠DCA+∠ACB=90°,
∴∠ACB=∠ECD,
又BC=DC,由(1)知:∠ABC=∠PDC,
∴△ABC≌△EDC(AAS),
∴AC=CE;
(3)当∠ABC=α=90°时,△ABC的外心在其斜边上;∠ABC=α>90°时,△ABC的外心在其外部,而45°<α<135°,故:45°<α<90°.
【点睛】
本题考查圆的综合运用,解题的关键是掌握三角形全等的判定和性质(AAS)、三角形外心.
23、大和尚有25人,小和尚有75人.
【解析】
设大和尚有x人,小和尚有y人,根据100个和尚吃100个馒头且1个大和尚分3个、3个小和尚分1个,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】
解:设大和尚有x人,小和尚有y人,
依题意,得:,
解得:.
答:大和尚有25人,小和尚有75人.
【点睛】
考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
24、43米
【解析】
作CE⊥AB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.根据tan∠ACE=,列出方程即可解决问题.
【详解】
解:如图,作CE⊥AB于E.则四边形BDCE是矩形,BE=CD=9.982米,设AB=x.
在Rt△ABD中,∵∠ADB=45°,
∴AB=BD=x,
在Rt△AEC中,
tan∠ACE==tan37.5°≈0.77,
∴=0.77,
解得x≈43,
答:“小雁塔”的高AB的长度约为43米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题.
2023-2024学年河南省驻马店市驿城区胡庙乡第一中学九年级数学第一学期期末监测模拟试题含答案: 这是一份2023-2024学年河南省驻马店市驿城区胡庙乡第一中学九年级数学第一学期期末监测模拟试题含答案,共7页。
河南省驻马店市驿城区胡庙乡第一中学2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案: 这是一份河南省驻马店市驿城区胡庙乡第一中学2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,若分式的值为0,则x的值为,若分式方程无解,则的值为等内容,欢迎下载使用。
2022-2023学年河南省驻马店市驿城区胡庙乡第一中学七年级数学第二学期期末学业水平测试模拟试题含答案: 这是一份2022-2023学年河南省驻马店市驿城区胡庙乡第一中学七年级数学第二学期期末学业水平测试模拟试题含答案,共7页。试卷主要包含了下列说法中,错误的是等内容,欢迎下载使用。