2022届河南省驻马店市驿城区重点达标名校中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
A.1或−2 B.−或
C. D.1
2.若关于x的方程=3的解为正数,则m的取值范围是( )
A.m< B.m<且m≠
C.m>﹣ D.m>﹣且m≠﹣
3.下列各数中,最小的数是( )
A.0 B. C. D.
4.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )
A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)
5.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是( )
A.6(m﹣n) B.3(m+n) C.4n D.4m
6.某几何体的左视图如图所示,则该几何体不可能是( )
A. B. C. D.
7.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于( )
A.2 B.﹣2 C.4 D.﹣4
8.2017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为( )
A.6.5×105 B.6.5×106 C.6.5×107 D.65×105
9.下列函数中,二次函数是( )
A.y=﹣4x+5 B.y=x(2x﹣3)
C.y=(x+4)2﹣x2 D.y=
10.下列各式中正确的是( )
A. =±3 B. =﹣3 C. =3 D.
二、填空题(共7小题,每小题3分,满分21分)
11.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是__.
12.二次根式 中的字母a的取值范围是_____.
13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是 .
14.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:
x
…
﹣5
﹣4
﹣3
﹣2
﹣1
…
y
…
﹣8
﹣3
0
1
0
…
当y<﹣3时,x的取值范围是_____.
15.函数y=中自变量x的取值范围是___________.
16.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.
17.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
19.(5分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
20.(8分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:
(1)本次抽查的学生人数是多少人?
(2)请补全条形统计图;请补全扇形统计图;
(3)“自行乘车”对应扇形的圆心角的度数是 度;
(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?
21.(10分)已知:如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3).
(1)求抛物线的解析式;
(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
22.(10分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.求证:△ACE≌△BCD;若AD=5,BD=12,求DE的长.
23.(12分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=,求FD的长.
24.(14分)如图1,在平行四边形ABCD中,对角线AC与BD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.
(1)求证:OE=OF;
(2)如图2,连接DE,BF,当DE⊥AB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
【详解】
∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=-=-1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵-2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a-6=0,
∴a=1,或a=-2(不合题意舍去).
故选D.
【点睛】
本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
2、B
【解析】
解:去分母得:x+m﹣3m=3x﹣9,
整理得:2x=﹣2m+9,解得:x=,
已知关于x的方程=3的解为正数,
所以﹣2m+9>0,解得m<,
当x=3时,x==3,解得:m=,
所以m的取值范围是:m<且m≠.
故答案选B.
3、D
【解析】
根据实数大小比较法则判断即可.
【详解】
<0<1<,
故选D.
【点睛】
本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
4、C
【解析】
如图:分别作AC与AB的垂直平分线,相交于点O,
则点O即是该圆弧所在圆的圆心.
∵点A的坐标为(﹣3,2),
∴点O的坐标为(﹣2,﹣1).
故选C.
5、D
【解析】
解:设小长方形的宽为a,长为b,则有b=n-3a,
阴影部分的周长:
2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.
故选D.
6、D
【解析】
解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,
故选D.
【点睛】
本题考查几何体的三视图.
7、B
【解析】
利用待定系数法求出m,再结合函数的性质即可解决问题.
【详解】
解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
∴m2=4,
∴m=±2,
∵y的值随x值的增大而减小,
∴m<0,
∴m=﹣2,
故选:B.
【点睛】
本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
8、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将6500000用科学记数法表示为:6.5×106.
故答案选B.
【点睛】
本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.
9、B
【解析】
A. y=-4x+5是一次函数,故此选项错误;
B. y= x(2x-3)=2x2-3x,是二次函数,故此选项正确;
C. y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;
D. y=是组合函数,故此选项错误.
故选B.
10、D
【解析】
原式利用平方根、立方根定义计算即可求出值.
【详解】
解:A、原式=3,不符合题意;
B、原式=|-3|=3,不符合题意;
C、原式不能化简,不符合题意;
D、原式=2-=,符合题意,
故选:D.
【点睛】
此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
【详解】
解:列表如下:
-2
-1
1
2
-2
2
-2
-4
-1
2
-1
-2
1
-2
-1
2
2
-4
-2
2
由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
∴积为大于-4小于2的概率为=,
故答案为:.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
12、a≥﹣1.
【解析】
根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围.
【详解】
由分析可得,a+1≥0,
解得:a≥﹣1.
【点睛】
熟练掌握二次根式被开方数为非负数是解答本题的关键.
13、(﹣b,a)
【解析】
解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),
设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=
同理cos α==sinβ=
所以x=﹣b,y=a,
故A1坐标为(﹣b,a).
【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.
14、x<﹣4或x>1
【解析】
观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y<-3时,x的取值范围即可.
【详解】
由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,
且x=1时,y=-3,
所以,y<-3时,x的取值范围为x<-4或x>1.
故答案为x<-4或x>1.
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.
15、x≥﹣且x≠1
【解析】
试题解析:根据题意得:
解得:x≥﹣且x≠1.
故答案为:x≥﹣且x≠1.
16、2或
【解析】
分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
(2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
【详解】
解:(1)当时,
∵垂直平分,
.
(2)当时,过点A作于点,
在与中,
.
故答案为或.
【点睛】
本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.
17、1
【解析】
方程常数项移到右边,两边加上25配方得到结果,求出m与n的值即可.
【详解】
解:∵x2+10x-11=0,
∴x2+10x=11,
则x2+10x+25=11+25,即(x+5)2=36,
∴m=5、n=36,
∴m+n=1,
故答案为1.
【点睛】
此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2).
【解析】
试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
试题解析:(1)连接OD.
∵OB=OD,
∴∠OBD=∠BDO.
∵∠CDA=∠CBD,
∴∠CDA=∠ODB.
又∵AB是⊙O的直径,∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,即∠CDO=90°,
∴OD⊥CD.
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,
BC=6,∴CD=4.
∵CE,BE是⊙O的切线,
∴BE=DE,BE⊥BC,
∴BE2+BC2=EC2,
即BE2+62=(4+BE)2,
解得BE=.
19、(1)
(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
【解析】
试题分析:(1)列表如下:
共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.
∴P(两数乘积是2的倍数)
P(两数乘积是3的倍数)
(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
考点:概率的计算
点评:题目难度不大,考查基本概率的计算,属于基础题。本题主要是第二问有点难度,对游戏规则的确定,需要一概率为基础。
20、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.
【解析】
(1)本次抽查的学生人数:18÷15%=120(人);
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).
【详解】
解:(1)本次抽查的学生人数:18÷15%=120(人),
答:本次抽查的学生人数是120人;
(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),
补全条形统计图如下:
“结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;
(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,
故答案为126;
(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),
答:该校“家人接送”上学的学生约有500人.
【点睛】
本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.
21、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).
【解析】
(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;
(2)根据的坐标,易求得直线的解析式.由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;
(3)本题应分情况讨论:①过作轴的平行线,与抛物线的交点符合点的要求,此时的纵坐标相同,代入抛物线的解析式中即可求出点坐标;②将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标.
【详解】
解:(1)把代入,
可以求得
∴
(2)过点作轴分别交线段和轴于点,
在中,令,得
设直线的解析式为
可求得直线的解析式为:
∵S四边形ABCD
设
当时,有最大值
此时四边形ABCD面积有最大值
(3)如图所示,
如图:①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥BC交x轴于点E1,此时四边形BP1CE1为平行四边形,
∵C(0,-3)
∴设P1(x,-3)
∴x2-x-3=-3,解得x1=0,x2=3,
∴P1(3,-3);
②平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,
∵C(0,-3)
∴设P(x,3),
∴x2-x-3=3,
x2-3x-8=0
解得x=或x=,
此时存在点P2(,3)和P3(,3),
综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3).
【点睛】
此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.
22、(1)证明见解析(2)13
【解析】
(1)先根据同角的余角相等得到∠ACE=∠BCD,再结合等腰直角三角形的性质即可证得结论;
(2)根据全等三角形的性质可得AE=BD,∠EAC=∠B=45°,即可证得△AED是直角三角形,再利用勾股定理即可求出DE的长.
【详解】
(1)∵△ACB和△ECD都是等腰直角三角形
∴AC=BC,EC=DC,∠ACB=∠ECD=90°
∵∠ACE=∠DCE-∠DCA,∠BCD=∠ACB-∠DCA
∴∠ACE=∠BCD
∴△ACE≌△BCD(SAS);
(2)∵△ACB和△ECD都是等腰直角三角形
∴∠BAC=∠B=45°
∵△ACE≌△BCD
∴AE=BD=12,∠EAC=∠B=45°
∴∠EAD=∠EAC+∠BAC=90°,
∴△EAD是直角三角形
【点睛】
解答本题的关键是熟练掌握全等三角形的性质:全等三角形的对应边相等、对应角相等.
23、(1)证明见解析(2)
【解析】
(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;
(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.
【详解】
(1)∵点G是AE的中点,
∴OD⊥AE,
∵FC=BC,
∴∠CBF=∠CFB,
∵∠CFB=∠DFG,
∴∠CBF=∠DFG
∵OB=OD,
∴∠D=∠OBD,
∵∠D+∠DFG=90°,
∴∠OBD+∠CBF=90°
即∠ABC=90°
∵OB是⊙O的半径,
∴BC是⊙O的切线;
(2)连接AD,
∵OA=5,tanA=,
∴OG=3,AG=4,
∴DG=OD﹣OG=2,
∵AB是⊙O的直径,
∴∠ADF=90°,
∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
∴∠DAG=∠FDG,
∴△DAG∽△FDG,
∴,
∴DG2=AG•FG,
∴4=4FG,
∴FG=1
∴由勾股定理可知:FD=.
【点睛】
本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.
24、(1)证明见解析;(2)△DOF,△FOB,△EOB,△DOE.
【解析】
(1)由四边形ABCD是平行四边形,可得OA=OC,AB∥CD,则可证得△AOE≌△COF(ASA),继而证得OE=OF;
(2)证明四边形DEBF是矩形,由矩形的性质和等腰三角形的性质即可得出结论.
【详解】
(1)∵四边形ABCD是平行四边形,
∴OA=OC,AB∥CD,OB=OD,
∴∠OAE=∠OCF,
在△OAE和△OCF中,
,
∴△AOE≌△COF(ASA),
∴OE=OF;
(2)∵OE=OF,OB=OD,
∴四边形DEBF是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形DEBF是矩形,
∴BD=EF,
∴OD=OB=OE=OF=BD,
∴腰长等于BD的所有的等腰三角形为△DOF,△FOB,△EOB,△DOE.
【点睛】
本题考查了等腰三角形的性质与平行四边形的性质,解题的关键是熟练的掌握等腰三角形的性质与平行四边形的性质.
河南省驻马店市驿城区重点达标名校2021-2022学年中考数学四模试卷含解析: 这是一份河南省驻马店市驿城区重点达标名校2021-2022学年中考数学四模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,下列分式中,最简分式是,运用乘法公式计算,计算-3-1的结果是等内容,欢迎下载使用。
2022年河南省驻马店市重点达标名校中考押题数学预测卷含解析: 这是一份2022年河南省驻马店市重点达标名校中考押题数学预测卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,﹣6的倒数是,如图,AB∥CD,那么等内容,欢迎下载使用。
2022届河南省安阳市滑县重点达标名校中考联考数学试题含解析: 这是一份2022届河南省安阳市滑县重点达标名校中考联考数学试题含解析,共21页。试卷主要包含了下列计算正确的是,下列运算结果正确的是,如下图所示,该几何体的俯视图是,中国古代在利用“计里画方”等内容,欢迎下载使用。