|试卷下载
搜索
    上传资料 赚现金
    2022届湖北省恩施州恩施市中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    2022届湖北省恩施州恩施市中考数学模拟精编试卷含解析01
    2022届湖北省恩施州恩施市中考数学模拟精编试卷含解析02
    2022届湖北省恩施州恩施市中考数学模拟精编试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省恩施州恩施市中考数学模拟精编试卷含解析

    展开
    这是一份2022届湖北省恩施州恩施市中考数学模拟精编试卷含解析,共25页。试卷主要包含了下列式子一定成立的是,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )
    A.摸出的三个球中至少有一个球是黑球
    B.摸出的三个球中至少有一个球是白球
    C.摸出的三个球中至少有两个球是黑球
    D.摸出的三个球中至少有两个球是白球
    2.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是(  )

    A. B. C. D.
    3.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

    A. B. C. D.
    4.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )

    A. B. C. D.
    5.下列式子一定成立的是(  )
    A.2a+3a=6a B.x8÷x2=x4
    C. D.(﹣a﹣2)3=﹣
    6.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是( )
    A.k>-1 B.k≥-1 C.k<-1 D.k≤-1
    7.如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是(  )

    A. B.2 C. D.2
    8.下列运算正确的是 ( )
    A.2+a=3 B. =
    C. D.=
    9.如图,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,则BC的长度为( )

    A. B. C.3 D.
    10.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是(  )

    A.主视图 B.俯视图 C.左视图 D.一样大
    11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为( )

    A.2 B.2 C. D.2
    12.下列图形中,主视图为①的是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.

    14.如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为 的中点,P是直径AB上一动点,则PC+PD的最小值为________.

    15.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.

    16.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A)豆沙粽(B)小枣粽(C)蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).

    分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.
    17.如图,将△AOB以O为位似中心,扩大得到△COD,其中B(3,0),D(4,0),则△AOB与△COD的相似比为_____.

    18.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.

    20.(6分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.

    (1)求证:AB是☉O的切线;
    (2)若∠A=60°,DF=,求☉O的直径BC的长.
    21.(6分)如图,在四边形ABCD中,∠ABC=90°,∠CAB=30°,DE⊥AC于E,且AE=CE,若DE=5,EB=12,求四边形ABCD的周长.

    22.(8分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
    23.(8分)已知:如图,在半径是4的⊙O中,AB、CD是两条直径,M是OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE,DE=.
    (1)求证:△AMC∽△EMB;
    (2)求EM的长;
    (3)求sin∠EOB的值.

    24.(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).

    请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?

    25.(10分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
    (1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
    (2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?
    26.(12分)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.分别求出一次函数与反比例函数的表达式;过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.

    27.(12分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是   .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.
    【详解】
    A、是必然事件;
    B、是随机事件,选项错误;
    C、是随机事件,选项错误;
    D、是随机事件,选项错误.
    故选A.
    2、D
    【解析】
    ∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,
    ∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,
    ∵0°<α<45°,∴0<x<1,
    故选D.
    【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.
    3、A
    【解析】
    解:∵AE平分∠BAD,
    ∴∠DAE=∠BAE;
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠BEA=∠DAE=∠BAE,
    ∴AB=BE=6,
    ∵BG⊥AE,垂足为G,
    ∴AE=2AG.
    在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
    ∴AG==2,
    ∴AE=2AG=4;
    ∴S△ABE=AE•BG=.
    ∵BE=6,BC=AD=9,
    ∴CE=BC﹣BE=9﹣6=3,
    ∴BE:CE=6:3=2:1,
    ∵AB∥FC,
    ∴△ABE∽△FCE,
    ∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
    故选A.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
    4、B
    【解析】
    根据左视图的定义,从左侧会发现两个正方形摞在一起.
    【详解】
    从左边看上下各一个小正方形,如图

    故选B.
    5、D
    【解析】
    根据合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则进行计算即可.
    【详解】
    解:A:2a+3a=(2+3)a=5a,故A错误;
    B:x8÷x2=x8-2=x6,故B错误;
    C:=,故C错误;
    D:(-a-2)3=-a-6=-,故D正确.
    故选D.
    【点睛】
    本题考查了合并同类项、同底数幂的除法法则、分数指数运算法则、幂的乘方法则.其中指数为分数的情况在初中阶段很少出现.
    6、C
    【解析】
    试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
    由题意得,解得
    故选C.
    考点:一元二次方程的根的判别式
    点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
    7、A
    【解析】
    试题分析:先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=2,所以EF=.
    解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
    ∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
    ∴AB=2EF,DC=DF+CF=8,
    作DH⊥BC于H,
    ∵AD∥BC,∠B=90°,
    ∴四边形ABHD为矩形,
    ∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,
    在Rt△DHC中,DH==2,
    ∴EF=DH=.
    故选A.

    点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
    8、D
    【解析】
    根据整式的混合运算计算得到结果,即可作出判断.
    【详解】
    A、2与a 不是同类项,不能合并,不符合题意;
    B、 =,不符合题意;
    C、原式=,不符合题意;
    D、=,符合题意,
    故选D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    9、A
    【解析】
    ∵∠AED=∠B,∠A=∠A
    ∴△ADE∽△ACB
    ∴,
    ∵DE=6,AB=10,AE=8,
    ∴,
    解得BC=.
    故选A.
    10、C
    【解析】
    如图,该几何体主视图是由5个小正方形组成,
    左视图是由3个小正方形组成,
    俯视图是由5个小正方形组成,
    故三种视图面积最小的是左视图,
    故选C.

    11、B
    【解析】
    本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.
    12、B
    【解析】
    分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.
    详解:A、主视图是等腰梯形,故此选项错误;
    B、主视图是长方形,故此选项正确;
    C、主视图是等腰梯形,故此选项错误;
    D、主视图是三角形,故此选项错误;
    故选B.
    点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、(1,0);(﹣5,﹣2).
    【解析】
    本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.
    【详解】
    ∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
    ∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
    (1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
    设AG所在直线的解析式为y=kx+b(k≠0),
    ∴,解得.
    ∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
    (2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
    设AE所在直线的解析式为y=kx+b(k≠0),
    ,解得,
    故此一次函数的解析式为…①,
    同理,设CG所在直线的解析式为y=kx+b(k≠0),
    ,解得,
    故此直线的解析式为…②
    联立①②得
    解得,故AE与CG的交点坐标是(-5,-2).
    故答案为:(1,0)、(-5,-2).
    14、
    【解析】
    作出D关于AB的对称点D’,则PC+PD的最小值就是CD’的长度,在△COD'中根据边角关系即可求解.
    【详解】

    解:如图:作出D关于AB的对称点D’,连接OC,OD',CD'.
    又∵点C在⊙O上,∠CAB=30°,D为弧BC的中点,即,
    ∴∠BAD'=∠CAB=15°.
    ∴∠CAD'=45°.
    ∴∠COD'=90°.则△COD'是等腰直角三角形.
    ∵OC=OD'=AB=1,

    故答案为:.
    【点睛】
    本题考查了轴对称-最短路线问题,勾股定理,垂径定理,正确作出辅助线是解题的关键.
    15、1-1.
    【解析】
    将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此题得解.
    【详解】
    将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.

    ∵AB=AC=2,∠BAC=120°,
    ∴∠ACB=∠B=∠ACF=10°,
    ∴∠ECG=60°.
    ∵CF=BD=2CE,
    ∴CG=CE,
    ∴△CEG为等边三角形,
    ∴EG=CG=FG,
    ∴∠EFG=∠FEG=∠CGE=10°,
    ∴△CEF为直角三角形.
    ∵∠BAC=120°,∠DAE=60°,
    ∴∠BAD+∠CAE=60°,
    ∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.
    在△ADE和△AFE中,

    ∴△ADE≌△AFE(SAS),
    ∴DE=FE.
    设EC=x,则BD=CF=2x,DE=FE=6-1x,
    在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,
    EF==x,
    ∴6-1x=x,
    x=1-,
    ∴DE=x=1-1.
    故答案为:1-1.
    【点睛】
    本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.
    16、120人, 3000人
    【解析】
    根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.
    【详解】
    调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);
    若该社区有10000人,估计爱吃鲜肉粽的人数约为:100003000(人).
    故答案为120人;3000人.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.
    17、3:1.
    【解析】
    ∵△AOB与△COD关于点O成位似图形,
    ∴△AOB∽△COD,
    则△AOB与△COD的相似比为OB:OD=3:1,
    故答案为3:1 (或).
    18、18
    【解析】
    三角形的重心是三条中线的交点,根据中线的性质,S△ACD=S△BCD;再利用勾股定理逆定理证明BG⊥CE,从而得出△BCD的高,可求△BCD的面积.
    【详解】
    ∵点G是△ABC的重心,

    ∵GB=3,EG=GC=4,BE=GA=5,
    ∴,即BG⊥CE,
    ∵CD为△ABC的中线,


    故答案为:18.
    【点睛】
    考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)详见解析;(2)1.
    【解析】
    (1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;
    (2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE==6,于是得到结论.
    【详解】
    (1)证明:∵AD∥BC,
    ∴∠ADB=∠CBD,
    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵BA=BC,
    ∴AD=BC,
    ∴四边形ABCD是平行四边形,
    ∵BA=BC,
    ∴四边形ABCD是菱形;
    (2)解:∵DE⊥BD,

    ∴∠BDE=90°,
    ∴∠DBC+∠E=∠BDC+∠CDE=90°,
    ∵CB=CD,
    ∴∠DBC=∠BDC,
    ∴∠CDE=∠E,
    ∴CD=CE=BC,
    ∴BE=2BC=10,
    ∵BD=8,
    ∴DE==6,
    ∵四边形ABCD是菱形,
    ∴AD=AB=BC=5,
    ∴四边形ABED的周长=AD+AB+BE+DE=1.
    【点睛】
    本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.
    20、(1)证明过程见解析;(2)
    【解析】
    (1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.
    【详解】
    (1)∵CB=CD
    ∴∠CBD=∠CDB
    又∵∠CEB=90°
    ∴∠CBD+∠BCE=∠CDE+∠DCE
    ∴∠BCE=∠DCE且∠BCD=2∠ABD
    ∴∠ABD=∠BCE
    ∴∠CBD+∠ABD=∠CBD+∠BCE=90°
    ∴CB⊥AB垂足为B
    又∵CB为直径
    ∴AB是⊙O的切线.
    (2)∵∠A=60°,DF=
    ∴在Rt△AFD中得出AF=1
    在Rt△BFD中得出DF=3
    ∵∠ADF=∠ACB ∠A=∠A
    ∴△ADF∽△ACB


    解得:CB=
    考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定
    21、38+12
    【解析】
    根据∠ABC=90°,AE=CE,EB=12,求出AC,根据Rt△ABC中,∠CAB=30°,BC=12,求出根据DE⊥AC,AE=CE,得AD=DC,在Rt△ADE中,由勾股定理求出 AD,从而得出DC的长,最后根据四边形ABCD的周长=AB+BC+CD+DA即可得出答案.
    【详解】
    ∵∠ABC=90°,AE=CE,EB=12,
    ∴EB=AE=CE=12,
    ∴AC=AE+CE=24,
    ∵在Rt△ABC中,∠CAB=30°,
    ∴BC=12,
    ∵DE⊥AC,AE=CE,
    ∴AD=DC,
    在Rt△ADE中,由勾股定理得
    ∴DC=13,
    ∴四边形ABCD的周长=AB+BC+CD+DA=
    【点睛】
    此题考查了解直角三角形,用到的知识点是解直角三角形、直角三角形斜边上的中线、勾股定理等,关键是根据有关定理和解直角三角形求出四边形每条边的长.
    22、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
    【解析】
    试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
    (2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
    (3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
    试题解析:(1)△ABC是等腰三角形;
    理由:∵x=﹣1是方程的根,
    ∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
    ∴a+c﹣2b+a﹣c=0,
    ∴a﹣b=0,
    ∴a=b,
    ∴△ABC是等腰三角形;
    (2)∵方程有两个相等的实数根,
    ∴(2b)2﹣4(a+c)(a﹣c)=0,
    ∴4b2﹣4a2+4c2=0,
    ∴a2=b2+c2,
    ∴△ABC是直角三角形;
    (3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
    2ax2+2ax=0,
    ∴x2+x=0,
    解得:x1=0,x2=﹣1.
    考点:一元二次方程的应用.
    23、(1)证明见解析;(2)EM=4;(3)sin∠EOB=.
    【解析】
    (1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;
    (2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;
    (3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.
    【详解】
    (1)证明:连接AC、EB,如图1,

    ∵∠A=∠BEC,∠B=∠ACM,
    ∴△AMC∽△EMB;
    (2)解:∵DC是⊙O的直径,
    ∴∠DEC=90°,
    ∴DE2+EC2=DC2,
    ∵DE=,CD=8,且EC为正数,
    ∴EC=7,
    ∵M为OB的中点,
    ∴BM=2,AM=6,
    ∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,
    ∴EM=4;
    (3)解:过点E作EF⊥AB,垂足为点F,如图2,

    ∵OE=4,EM=4,
    ∴OE=EM,
    ∴OF=FM=1,
    ∴EF=,
    ∴sin∠EOB=.
    【点睛】
    本题考查了圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质,解题的关键是熟练的掌握圆心角、弧、弦、弦心距的关系与相似三角形的判定与性质.
    24、(1)详见解析;(2)40%;(3)105;(4).
    【解析】
    (1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
    (2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
    (3)根据样本估计总体的方法计算即可;
    (4)利用概率公式即可得出结论.
    【详解】
    (1)由条形图知,男生共有:10+20+13+9=52人,
    ∴女生人数为100-52=48人,
    ∴参加武术的女生为48-15-8-15=10人,
    ∴参加武术的人数为20+10=30人,
    ∴30÷100=30%,
    参加器乐的人数为9+15=24人,
    ∴24÷100=24%,
    补全条形统计图和扇形统计图如图所示:
    (2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
    答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
    (3)500×21%=105(人).
    答:估计其中参加“书法”项目活动的有105人.
    (4).
    答:正好抽到参加“器乐”活动项目的女生的概率为.
    【点睛】
    此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    25、(1)商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.
    【解析】
    (1)根据“总利润=每件的利润×每天的销量”列方程求解可得;
    (2)利用(1)中的相等关系列出函数解析式,配方成顶点式,利用二次函数的性质求解可得.
    【详解】
    解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,
    即x2﹣10x+16=0,
    解得:x1=2,x2=8,
    经检验:x1=2,x2=8,
    答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;
    (2)依题意得:y=(100﹣80﹣x)(100+10x)
    =﹣10x2+100x+2000
    =﹣10(x﹣5)2+2250,
    ∵﹣10<0,
    ∴当x=5时,y取得最大值为2250元.
    答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.
    【点睛】
    本题考查二次函数的应用和一元二次方程的应用,解题关键是由题意确定题目蕴含的相等关系,并据此列出方程或函数解析式.
    26、(1)反比例函数解析式为y=,一次函数解析式为y=x+2;(2)△ACB的面积为1.
    【解析】
    (1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;
    (2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.
    【详解】
    解:(1)将点A(2,4)代入y=,得:m=8,则反比例函数解析式为y=,
    当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),
    将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,
    解得:,则一次函数解析式为y=x+2;
    (2)由题意知BC=2,则△ACB的面积=×2×1=1.
    【点睛】
    本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.
    27、(1);(2);(3)第一题.
    【解析】
    (1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;
    (2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
    (3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.
    【详解】
    (1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;
    故答案为;
    (2)画树状图为:

    共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;
    (3)建议小明在第一题使用“求助”.理由如下:
    小明将“求助”留在第一题,
    画树状图为:

    小明将“求助”留在第一题使用,小明顺利通关的概率=,
    因为>,
    所以建议小明在第一题使用“求助”.
    【点睛】
    本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.

    相关试卷

    2024年湖北省恩施州恩施市熊家岩初级中学中考数学一模试卷(1)(含解析): 这是一份2024年湖北省恩施州恩施市熊家岩初级中学中考数学一模试卷(1)(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年湖北省恩施州恩施市龙凤民族中学中考数学模拟试卷(含解析): 这是一份2023年湖北省恩施州恩施市龙凤民族中学中考数学模拟试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年湖北省恩施州恩施市中考数学一模试卷(含解析): 这是一份2023年湖北省恩施州恩施市中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map