黑龙江省大庆市林甸四中学2021-2022学年中考数学模拟预测试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是( )
A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
2.如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是( )
A.1 B. C.2 D.
3.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )
A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5
4.下列计算正确的是( )
A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=2
5.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根 B.有两个相等实数根
C.有且只有一个实数根 D.没有实数根
6.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )
A.圆柱 B.正方体 C.球 D.直立圆锥
7.函数y=ax2与y=﹣ax+b的图象可能是( )
A. B.
C. D.
8.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )
A.①② B.①③ C.②③ D.①②③
9.估算的值是在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
10.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.
12.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.
13.如图,在平面直角坐标系中有矩形ABCD,A(0,0),C(8,6),M为边CD上一动点,当△ABM是等腰三角形时,M点的坐标为_____.
14.把多项式9x3﹣x分解因式的结果是_____.
15.如图,在⊙O中,直径AB⊥弦CD,∠A=28°,则∠D=_______.
16.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.
17.如图,点 A 是反比例函数 y=﹣(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.
三、解答题(共7小题,满分69分)
18.(10分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.求与之间的函数关系式,并写出自变量的取值范围;求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
19.(5分)解不等式组,
请结合题意填空,完成本题的解答.
(1)解不等式①,得_____;
(2)解不等式②,得_____;
(3)把不等式①和②的解集在数轴上表示出来;
(4)原不等式组的解集为_____.
20.(8分)已知抛物线y=a(x-1)2+3(a≠0)与y轴交于点A(0,2),顶点为B,且对称轴l1与x轴交于点M
(1)求a的值,并写出点B的坐标;
(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C,且新抛物线的对称轴l2与x轴交于点N,过点C做DE∥x轴,分别交l1、l2于点D、E,若四边形MDEN是正方形,求平移后抛物线的解析式.
21.(10分)有这样一个问题:探究函数的图象与性质.小怀根据学习函数的经验,对函数的图象与性质进行了探究.下面是小怀的探究过程,请补充完成:
(1)函数的自变量x的取值范围是 ;
(2)列出y与x的几组对应值.请直接写出m的值,m= ;
(3)请在平面直角坐标系xOy中,描出表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出函数的一条性质.
22.(10分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
(3)登山多长时间时,甲、乙两人距地面的高度差为50米?
23.(12分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
24.(14分)计算:(﹣1)2018﹣2+|1﹣|+3tan30°.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
故选A.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
2、B
【解析】
连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.
【详解】
解:连接AG、GE、EC,
则四边形ACEG为正方形,故=.
故选:B.
【点睛】
本题考查了正多边形的性质,正确作出辅助线是关键.
3、D
【解析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
解:A、平均数为=3,正确;
B、重新排列为1、2、3、3、6,则中位数为3,正确;
C、众数为3,正确;
D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;
故选:D.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
4、B
【解析】
根据整式的加减乘除乘方运算法则逐一运算即可。
【详解】
A. ,故A选项错误。
B. ,故B选项正确。
C.,故C选项错误。
D. ,故D选项错误。
故答案选B.
【点睛】
本题考查整式加减乘除运算法则,只需熟记法则与公式即可。
5、A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
6、B
【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.
考点:简单几何体的三视图.
7、B
【解析】
选项中,由图可知:在,;在,,∴,所以A错误;
选项中,由图可知:在,;在,,∴,所以B正确;
选项中,由图可知:在,;在,,∴,所以C错误;
选项中,由图可知:在,;在,,∴,所以D错误.
故选B.
点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.
8、B
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
①对从某国进口的香蕉进行检验检疫适合抽样调查;
②审查某教科书稿适合全面调查;
③中央电视台“鸡年春晚”收视率适合抽样调查.
故选B.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、C
【解析】
求出<<,推出4<<5,即可得出答案.
【详解】
∵<<,
∴4<<5,
∴的值是在4和5之间.
故选:C.
【点睛】
本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出<<,题目比较好,难度不大.
10、B
【解析】
分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.
详解:画树状图,得
∴共有8种情况,经过每个路口都是绿灯的有一种,
∴实际这样的机会是.
故选B.
点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.
二、填空题(共7小题,每小题3分,满分21分)
11、m<﹣1.
【解析】
根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.
【详解】
∵关于x的方程x2﹣2x﹣m=0没有实数根,
∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,
解得:m<﹣1,
故答案为:m<﹣1.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
12、60.
【解析】
首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
【详解】
设半圆的圆心为O,连接OE,OA,
∵CD=2OC=2BC,
∴OC=BC,
∵∠ACB=90°,即AC⊥OB,
∴OA=BA,
∴∠AOC=∠ABC,
∵∠BAC=30°,
∴∠AOC=∠ABC=60°,
∵AE是切线,
∴∠AEO=90°,
∴∠AEO=∠ACO=90°,
∵在Rt△AOE和Rt△AOC中,
,
∴Rt△AOE≌Rt△AOC(HL),
∴∠AOE=∠AOC=60°,
∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
∴点E所对应的量角器上的刻度数是60°,
故答案为:60.
【点睛】
本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
13、(4,6),(8﹣2,6),(2,6).
【解析】
分别取三个点作为定点,然后根据勾股定理和等腰三角形的两个腰相等来判断是否存在符合题意的M的坐标.
【详解】
解:当M为顶点时,AB长为底=8,M在DC中点上,
所以M的坐标为(4, 6),
当B为顶点时,AB长为腰=8,M在靠近D处,根据勾股定理可知ME==2
所以M的坐标为(8﹣2,6);
当A为顶点时,AB长为腰=8,M在靠近C处,根据勾股定理可知MF==2
所以M的坐标为(2,6);
综上所述,M的坐标为(4,6),(8﹣2,6),(2,6);
故答案为:(4,6),(8﹣2,6),(2,6).
【点睛】
本题主要考查矩形的性质、坐标与图形性质,解题关键是根据对等腰三角形性质的掌握和勾股定理的应用.
14、x(3x+1)(3x﹣1)
【解析】
提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.
【详解】
9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案为x(3x+1)(3x-1).
【点睛】
本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.
15、34°
【解析】
分析:首先根据垂径定理得出∠BOD的度数,然后根据三角形内角和定理得出∠D的度数.
详解:∵直径AB⊥弦CD, ∴∠BOD=2∠A=56°, ∴∠D=90°-56°=34°.
点睛:本题主要考查的是圆的垂径定理,属于基础题型.求出∠BOD的度数是解题的关键.
16、5或1.
【解析】
先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.
【详解】
∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,
∴AB=5,
∵以AD为折痕△ABD折叠得到△AB′D,
∴BD=DB′,AB′=AB=5.
如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.
设BD=DB′=x,则AF=6+x,FB′=8-x.
在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.
解得:x1=5,x5=0(舍去).
∴BD=5.
如图5所示:当∠B′ED=90°时,C与点E重合.
∵AB′=5,AC=6,
∴B′E=5.
设BD=DB′=x,则CD=8-x.
在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.
解得:x=1.
∴BD=1.
综上所述,BD的长为5或1.
17、4﹣π
【解析】
由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.
【详解】
由题意可以假设A(-m,m),
则-m2=-4,
∴m=≠±2,
∴m=2,
∴S阴=S正方形-S圆=4-π,
故答案为4-π.
【点睛】
本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题
三、解答题(共7小题,满分69分)
18、(1) (2),,144元
【解析】
(1)利用待定系数法求解可得关于的函数解析式;
(2)根据“总利润每件的利润销售量”可得函数解析式,将其配方成顶点式,利用二次函数的性质进一步求解可得.
【详解】
(1)设与的函数解析式为,
将、代入,得:,
解得:,
所以与的函数解析式为;
(2)根据题意知,
,
,
当时,随的增大而增大,
,
当时,取得最大值,最大值为144,
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【点睛】
本题考查了二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据相等关系列出二次函数解析式及二次函数的性质.
19、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.
【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
【详解】
解:(1)解不等式①,得x>1;
(1)解不等式②,得 x≤1;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为:1<x≤1.
【点睛】
本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
20、(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.
【解析】
(1)利用待定系数法即可解决问题;
(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.
【详解】
(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,
∴a=-1,
∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)
(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,
由解得x=
∴点C的横坐标为
∵MN=m-1,四边形MDEN是正方形,
∴C(,m-1)
把C点代入y=-(x-1)2+3,
得m-1=-+3,
解得m=3或-5(舍去)
∴平移后的解析式为y=-(x-3)2+3,
当点C在x轴的下方时,C(,1-m)
把C点代入y=-(x-1)2+3,
得1-m=-+3,
解得m=7或-1(舍去)
∴平移后的解析式为y=-(x-7)2+3
综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解.
21、(1)x≠﹣1;(2)2;(2)见解析;(4)在x<﹣1和x>﹣1上均单调递增;
【解析】
(1)根据分母非零即可得出x+1≠0,解之即可得出自变量x的取值范围;
(2)将y=代入函数解析式中求出x值即可;
(2)描点、连线画出函数图象;
(4)观察函数图象,写出函数的一条性质即可.
【详解】
解:(1)∵x+1≠0,∴x≠﹣1.
故答案为x≠﹣1.
(2)当y==时,解得:x=2.
故答案为2.
(2)描点、连线画出图象如图所示.
(4)观察函数图象,发现:函数在x<﹣1和x>﹣1上均单调递增.
【点睛】
本题考查了反比例函数的性质以及函数图象,根据给定数据描点、连线画出函数图象是解题的关键.
22、(1)10;1;(2);(3)4分钟、9分钟或3分钟.
【解析】
(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
【详解】
(1)(10-100)÷20=10(米/分钟),
b=3÷1×2=1.
故答案为:10;1.
(2)当0≤x≤2时,y=3x;
当x≥2时,y=1+10×3(x-2)=1x-1.
当y=1x-1=10时,x=2.
∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.
(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
当10x+100-(1x-1)=50时,解得:x=4;
当1x-1-(10x+100)=50时,解得:x=9;
当10-(10x+100)=50时,解得:x=3.
答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.
【点睛】
本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
23、(3)a=,方程的另一根为;(2)答案见解析.
【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
【详解】
(3)将x=2代入方程,得,解得:a=.
将a=代入原方程得,解得:x3=,x2=2.
∴a=,方程的另一根为;
(2)①当a=3时,方程为2x=3,解得:x=3.
②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
24、﹣6+2
【解析】
分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案.
详解:原式=1﹣6+﹣1+3×
=﹣5+﹣1+
=﹣6+2.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
四川省阆中学中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份四川省阆中学中学2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了如果,则a的取值范围是,对于点A,,下列运算正确的是,二次函数的对称轴是等内容,欢迎下载使用。
2022届黑龙江省大庆市林甸四中学中考联考数学试题含解析: 这是一份2022届黑龙江省大庆市林甸四中学中考联考数学试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,计算3的结果是等内容,欢迎下载使用。
2022届黑龙江省大庆市林甸四中学中考数学模拟精编试卷含解析: 这是一份2022届黑龙江省大庆市林甸四中学中考数学模拟精编试卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,如图,空心圆柱体的左视图是,下列计算错误的是,的绝对值是等内容,欢迎下载使用。