|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届安徽省怀远县包集中学中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    2022届安徽省怀远县包集中学中考数学考前最后一卷含解析01
    2022届安徽省怀远县包集中学中考数学考前最后一卷含解析02
    2022届安徽省怀远县包集中学中考数学考前最后一卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安徽省怀远县包集中学中考数学考前最后一卷含解析

    展开
    这是一份2022届安徽省怀远县包集中学中考数学考前最后一卷含解析,共22页。试卷主要包含了点A关于原点对称的点的坐标是,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是(  )

    A.60° B.35° C.30.5° D.30°
    2.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
    确的是(  )
    A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1
    3.下列图形中是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    4.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(  )

    A. B. C. D.
    5.点A(-2,5)关于原点对称的点的坐标是 ( )
    A.(2,5) B.(2,-5) C.(-2,-5) D.(-5,-2)
    6.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
    A. B. C. D.
    7.已知a,b为两个连续的整数,且a< A.7 B.8 C.9 D.10
    8.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
    A. B. C. D.
    9.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为(  )

    A. B. C. D.
    10.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
    A.60元 B.70元 C.80元 D.90元
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.因式分解:9a2﹣12a+4=______.
    12.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.

    13.如图,在ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=cm,则EF+CF的长为 cm.

    14.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.
    15.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
    16.因式分解:____________.
    三、解答题(共8题,共72分)
    17.(8分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
    (1)求抛物线C1的表达式;
    (2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
    (3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.

    18.(8分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

    (1)OC的长为  ;
    (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=  ;
    (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
    19.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的跳远成绩,将两次测得的成绩制作成图所示的统计图和不完整的统计表(满分10分,得分均为整数).


    根据以上信息回答下列问题:训练后学生成绩统计表中,并补充完成下表:
    若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?经调查,经过训练后得到9分的五名同学中,有三名男生和两名女生,王老师要从这五名同学中随机抽取两名同学写出训练报告,请用列表或画树状图的方法,求所抽取的两名同学恰好是一男一女的概率.
    20.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×
    21.(8分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.
    (1)直接写出销售量y个与降价x元之间的函数关系式;
    (2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?
    (3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?
    22.(10分)某企业信息部进行市场调研发现:
    信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
    x(万元)
    1
    2
    2.5
    3
    5
    yA(万元)
    0.4
    0.8
    1
    1.2
    2
    信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
    (1)求出yB与x的函数关系式;
    (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
    (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?
    23.(12分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.
    (1)求抛物线的函数关系式;
    (2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;
    (3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.

    24.某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售.按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:
    产品名称
    核桃
    花椒
    甘蓝
    每辆汽车运载量(吨)
    10
    6
    4
    每吨土特产利润(万元)
    0.7
    0.8
    0.5
    若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总利润为y万元.
    (1)求y与x之间的函数关系式;
    (2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
    【详解】
    连接OB,
    ∵点B是弧的中点,
    ∴∠AOB= ∠AOC=60°,
    由圆周角定理得,∠D= ∠AOB=30°,
    故选D.

    【点睛】
    此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
    2、B
    【解析】
    根据的图象上的三点,把三点代入可以得到x1=﹣ ,x1= ,x3=,在根据a的大小即可解题
    【详解】
    解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,
    ∴x1=﹣ ,x1= ,x3= ,
    ∵a<1,
    ∴a﹣1<0,
    ∴x1>x3>x1.
    故选B.
    【点睛】
    此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断
    3、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解.
    详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误.
    故选:C.
    点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    4、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:

    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    5、B
    【解析】
    根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
    【详解】
    根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).
    故选:B.
    【点睛】
    考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
    6、B
    【解析】
    试题解析:列表如下:

    ∴共有20种等可能的结果,P(一男一女)=.
    故选B.
    7、A
    【解析】
    ∵9<11<16,
    ∴,
    即,
    ∵a,b为两个连续的整数,且,
    ∴a=3,b=4,
    ∴a+b=7,
    故选A.
    8、C
    【解析】
    根据中心对称图形的概念进行分析.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误;
    故选:C.
    【点睛】
    考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、A
    【解析】
    试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
    设BD=a,则OC=3a.
    ∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
    在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
    同理,可求出点D的坐标为(1﹣a,a).
    ∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.

    10、C
    【解析】
    设销售该商品每月所获总利润为w,
    则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,
    ∴当x=80时,w取得最大值,最大值为3600,
    即售价为80元/件时,销售该商品所获利润最大,故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(3a﹣1)1
    【解析】
    直接利用完全平方公式分解因式得出答案.
    【详解】
    9a1-11a+4=(3a-1)1.
    故答案是:(3a﹣1)1.
    【点睛】
    考查了公式法分解因式,正确运用公式是解题关键.
    12、
    【解析】
    设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
    【详解】
    设CE=x.
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
    ∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
    ∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
    在Rt△ABF中,由勾股定理得:
    AF2=52-32=16,
    ∴AF=4,DF=5-4=1.
    在Rt△DEF中,由勾股定理得:
    EF2=DE2+DF2,
    即x2=(3-x)2+12,
    解得:x=,
    故答案为.
    13、5
    【解析】
    分析:∵AF是∠BAD的平分线,∴∠BAF=∠FAD.
    ∵ABCD中,AB∥DC,∴∠FAD =∠AEB.∴∠BAF=∠AEB.
    ∴△BAE是等腰三角形,即BE=AB=6cm.
    同理可证△CFE也是等腰三角形,且△BAE∽△CFE.
    ∵BC= AD=9cm,∴CE=CF=3cm.∴△BAE和△CFE的相似比是2:1.
    ∵BG⊥AE, BG=cm,∴由勾股定理得EG=2cm.∴AE=4cm.∴EF=2cm.
    ∴EF+CF=5cm.
    14、
    【解析】
    mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),
    故答案为n(n-m)(m+1).
    15、1
    【解析】
    设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.
    【详解】
    设购买篮球x个,则购买足球个,
    根据题意得:,
    解得:.
    为整数,
    最大值为1.
    故答案为1.
    【点睛】
    本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.
    16、3(x-2)(x+2)
    【解析】
    先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.
    【详解】
    原式=3(x2﹣4)=3(x-2)(x+2).
    故答案为3(x-2)(x+2).
    【点睛】
    本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.

    三、解答题(共8题,共72分)
    17、(1)y;(2);(3)E(,0).
    【解析】
    (1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
    (2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
    (3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
    【详解】
    解:(1)∵抛物线C1的顶点为,
    ∴可设抛物线C1的表达式为y,
    将B(﹣1,0)代入抛物线解析式得:,
    ∴,
    解得:a,
    ∴抛物线C1的表达式为y,即y.
    (2)设抛物线C2的顶点坐标为
    ∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称


    ∴抛物线C2的顶点坐标为()
    可设抛物线C2的表达式为y
    ∵抛物线C2开口朝下,且形状不变

    ∴抛物线C2的表达式为y,即.
    (3)如图,作GK⊥x轴于G,DH⊥AB于H.

    由题意GK=DH=3,AH=HB=EK=KF,
    ∵四边形AGFD是矩形,
    ∴∠AGF=∠GKF=90°,
    ∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
    ∴∠AGK=∠GFK.
    ∵∠AKG=∠FKG=90°,
    ∴△AGK∽△GFK,
    ∴,
    ∴,
    ∴AK=6,

    ∴BE=BK﹣EK=3,
    ∴OE,
    ∴E(,0).
    【点睛】
    本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
    18、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).
    【解析】
    分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
    (4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
    详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.
    ∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
    ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
    ∵∠BHA=90°,∠BAO=45°,
    ∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.
    故答案为4.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).
    由(4)得:OH=2,BH=4.
    ∵OC与⊙M相切于N,∴MN⊥OC.
    设圆的半径为r,则MN=MB=MD=r.
    ∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
    ∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
    在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
    解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
    ∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
    ∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
    ∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
    ∴OG===2.
    同理可得:OB=2,AB=4,∴BG=AB=2.
    设OR=x,则RG=2﹣x.
    ∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
    ∴(2)2﹣x2=(2)2﹣(2﹣x)2.
    解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
    在Rt△ORB中,sin∠BOR===.
    故答案为.
    (4)①当∠BDE=90°时,点D在直线PE上,如图2.
    此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
    解得:t=4.则OP=CD=DB=4.
    ∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
    ∴点E的坐标为(4,2).
    ②当∠BED=90°时,如图4.
    ∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
    ∴==,∴BE=t.
    ∵PE∥OC,∴∠OEP=∠BOC.
    ∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
    ∴==,∴OE=t.
    ∵OE+BE=OB=2t+t=2.
    解得:t=,∴OP=,OE=,∴PE==,
    ∴点E的坐标为().
    ③当∠DBE=90°时,如图4.
    此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
    则有OD=PE,EA==(6﹣t)=6﹣t,
    ∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
    ∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
    ∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
    在Rt△DBE中,cos∠BED==,∴DE=BE,
    ∴t=t﹣2)=2t﹣4.
    解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
    综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).


    点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
    19、(1),见解析;(2)125人;(3)
    【解析】
    (1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
    (2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
    (3)画树状图展示所有20种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.
    【详解】
    (1)解:(1)n=20-1-3-8-5=3;
    强化训练前的中位数,
    强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
    强化训练后的众数为8,
    故答案为3;7.5;8.3;8;

    (2)(人)
    (3)(3)画树状图为:

    共有20种等可能的结果数,其中所抽取的两名同学恰好是一男一女的结果数为12,
    所以所抽取的两名同学恰好是一男一女的概率P=.
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.
    20、﹣1
    【解析】
    根据乘方的意义、绝对值的性质、零指数幂的性质及立方根的定义依次计算各项后,再根据有理数的运算法则进行计算即可.
    【详解】
    原式=﹣1+3﹣1×3=﹣1.
    【点睛】
    本题考查了乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算,熟知乘方的意义、绝对值的性质、零指数幂的性质、立方根的定义及有理数的混合运算顺序是解决问题的关键.
    21、(1)y=10x+160;(2)5280元;(3)10000元.
    【解析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;
    (2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;
    (3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.
    试题解析:(1)依题意有:y=10x+160;
    (2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∵-10<0且x为偶数,故当x=6或x=8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;
    (3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).
    答:他至少要准备10000元进货成本.
    点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.
    22、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
    【解析】
    (1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
    (2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
    (3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
    【详解】
    解:(1)yB=-0.2x2+1.6x,
    (2)一次函数,yA=0.4x,
    (3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
    ∴当x=3时,W最大值=7.8,
    答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.
    23、(1)y=﹣x2﹣x+3;(2)点P的坐标为(﹣,1);(3)当AM+CN的值最大时,点D的坐标为(,).
    【解析】
    (1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;
    (2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;
    (3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.
    【详解】
    (1)∵直线y=x+3与x轴、y轴分别交于A、C两点,
    ∴点A的坐标为(﹣4,0),点C的坐标为(0,3).
    ∵点B在x轴上,点B的横坐标为,
    ∴点B的坐标为(,0),
    设抛物线的函数关系式为y=ax2+bx+c(a≠0),
    将A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:
    ,解得: ,
    ∴抛物线的函数关系式为y=﹣x2﹣x+3;
    (2)如图1,过点P作PE⊥x轴,垂足为点E,
    ∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,
    ∴CP=2AP,
    ∵PE⊥x轴,CO⊥x轴,
    ∴△APE∽△ACO,
    ∴,
    ∴AE=AO=,PE=CO=1,
    ∴OE=OA﹣AE=,
    ∴点P的坐标为(﹣,1);
    (3)如图2,连接AC交OD于点F,
    ∵AM⊥OD,CN⊥OD,
    ∴AF≥AM,CF≥CN,
    ∴当点M、N、F重合时,AM+CN取最大值,
    过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,
    ∴,
    ∴设点D的坐标为(﹣3t,4t).
    ∵点D在抛物线y=﹣x2﹣x+3上,
    ∴4t=﹣3t2+t+3,
    解得:t1=﹣(不合题意,舍去),t2=,
    ∴点D的坐标为(,),
    故当AM+CN的值最大时,点D的坐标为(,).

    【点睛】
    本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(﹣3t,4t).
    24、 (1)y=﹣3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
    【解析】
    (1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,从而可以得到y与x的函数关系式;
    (1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数.
    【详解】
    (1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30﹣x﹣(1x+1)=(12﹣3x)辆,
    根据题意得:y=10×0.7x+4×0.5(1x+1)+6×0.8(12﹣3x)=﹣3.4x+141.1.
    (1)根据题意得:,
    解得:7≤x≤,
    ∵x为整数,
    ∴7≤x≤2.
    ∵10.6>0,
    ∴y随x增大而减小,
    ∴当x=7时,y取最大值,最大值=﹣3.4×7+141.1=117.4,此时:1x+1=12,12﹣3x=1.
    答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元.
    【点睛】
    本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.

    相关试卷

    江苏省扬州市仪征市新集初级中学2021-2022学年中考数学考前最后一卷含解析: 这是一份江苏省扬州市仪征市新集初级中学2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了二次函数y=ax2+bx+c,下列计算正确的是等内容,欢迎下载使用。

    2022年安徽省天长市龙岗中学中考考前最后一卷数学试卷含解析: 这是一份2022年安徽省天长市龙岗中学中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,sin45°的值等于,计算-5x2-3x2的结果是等内容,欢迎下载使用。

    2022年安徽省庐江县中考考前最后一卷数学试卷含解析: 这是一份2022年安徽省庐江县中考考前最后一卷数学试卷含解析,共20页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map