|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广西柳州柳北区七校联考中考联考数学试卷含解析
    立即下载
    加入资料篮
    2022届广西柳州柳北区七校联考中考联考数学试卷含解析01
    2022届广西柳州柳北区七校联考中考联考数学试卷含解析02
    2022届广西柳州柳北区七校联考中考联考数学试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广西柳州柳北区七校联考中考联考数学试卷含解析

    展开
    这是一份2022届广西柳州柳北区七校联考中考联考数学试卷含解析,共26页。试卷主要包含了下面调查方式中,合适的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )

    A. B.
    C. D.
    2.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )

    A.62° B.56° C.60° D.28°
    3.如图,已知,那么下列结论正确的是( )

    A. B. C. D.
    4.如图,在平面直角坐标系中,正方形的顶点在轴上,且,,则正方形的面积是( )

    A. B. C. D.
    5.下列图形中,阴影部分面积最大的是
    A. B. C. D.
    6.下面调查方式中,合适的是(  )
    A.调查你所在班级同学的体重,采用抽样调查方式
    B.调查乌金塘水库的水质情况,采用抽样调査的方式
    C.调查《CBA联赛》栏目在我市的收视率,采用普查的方式
    D.要了解全市初中学生的业余爱好,采用普查的方式
    7.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是(  )

    A.2 B. C.2 D.5
    8.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

    A.11 B.10 C.9 D.16
    9.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于( )

    A.19° B.38° C.42° D.52°
    10.如图,4张如图1的长为a,宽为b(a>b)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S2=2S1,则a,b满足(  )

    A.a= B.a=2b C.a=b D.a=3b
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).

    12.在△ABC中,MN∥BC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.

    13.如图,A、D是⊙O上的两个点,BC是直径,若∠D=40°,则∠OAC=____度.

    14.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为 .

    15.已知(x、y、z≠0),那么的值为_____.
    16.如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.

    17.已知,则=_______.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.

    19.(5分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
    (1)求AB的长;
    (2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.

    20.(8分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.
    (1)求m的值及一次函数解析式;
    (2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.

    21.(10分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
    (2)如图,在中,,,为边的中点,于点,交于,求的值
    (3)如图,中,,为边的中点,于点,交于,若,,求.

    22.(10分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.

    A
    B
    C
    笔试
    85
    95
    90
    口试
       
    80
    85
    (1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为   度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为   ,B同学得票数为   ,C同学得票数为   ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断   当选.(从A、B、C、选择一个填空)

    23.(12分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
    (1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
    学员
    培训时段
    培训学时
    培训总费用
    小明
    普通时段
    20
    6000元
    高峰时段
    5
    节假日时段
    15
    小华
    普通时段
    30
    5400元
    高峰时段
    2
    节假日时段
    8
    (2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
    ①求y与x之间的函数关系式,并确定自变量x的取值范围;
    ②小陈如何选择培训时段,才能使得本次培训的总费用最低?
    24.(14分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
    (1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
    (2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.
    【详解】
    在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.

    【点睛】
    本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.
    2、A
    【解析】
    连接OB.
    在△OAB中,OA=OB(⊙O的半径),
    ∴∠OAB=∠OBA(等边对等角);
    又∵∠OAB=28°,
    ∴∠OBA=28°;
    ∴∠AOB=180°-2×28°=124°;
    而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
    ∴∠C=62°;
    故选A
    3、A
    【解析】
    已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.
    【详解】
    ∵AB∥CD∥EF,
    ∴.
    故选A.
    【点睛】
    本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.
    4、D
    【解析】

    作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),
    ∴OD=AE=5,
    ,
    ∴正方形的面积是: ,故选D.
    5、C
    【解析】
    分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可:
    【详解】
    A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=1.
    B、根据反比例函数系数k的几何意义,阴影部分面积和为:.
    C、如图,过点M作MA⊥x轴于点A,过点N作NB⊥x轴于点B,

    根据反比例函数系数k的几何意义,S△OAM=S△OAM=,从而阴影部分面积和为梯形MABN的面积:.
    D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:.
    综上所述,阴影部分面积最大的是C.故选C.
    6、B
    【解析】
    由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    【详解】
    A、调查你所在班级同学的体重,采用普查,故A不符合题意;
    B、调查乌金塘水库的水质情况,无法普查,采用抽样调査的方式,故B符合题意;
    C、调查《CBA联赛》栏目在我市的收视率,调查范围广适合抽样调查,故C不符合题意;
    D、要了解全市初中学生的业余爱好,调查范围广适合抽样调查,故D不符合题意;
    故选B.
    【点睛】
    本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    7、C
    【解析】
    作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.
    【详解】
    解:作OH⊥AB于H,OG⊥CD于G,连接OA,
    由相交弦定理得,CE•ED=EA•BE,即EA×1=3,
    解得,AE=3,
    ∴AB=4,
    ∵OH⊥AB,
    ∴AH=HB=2,
    ∵AB=CD,CE•ED=3,
    ∴CD=4,
    ∵OG⊥CD,
    ∴EG=1,
    由题意得,四边形HEGO是矩形,
    ∴OH=EG=1,
    由勾股定理得,OA=,
    ∴⊙O的直径为,
    故选C.

    【点睛】
    此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.
    8、B
    【解析】
    根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
    【详解】
    如图,∵四边形ABCD是矩形,
    ∴AD=BC,∠D=∠B=90°,
    根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
    ∴HC=BC,∠H=∠B,
    又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
    ∴∠HCE=∠BCF,
    在△EHC和△FBC中,
    ∵,
    ∴△EHC≌△FBC,
    ∴BF=HE,
    ∴BF=HE=DE,
    设BF=EH=DE=x,
    则AF=CF=9﹣x,
    在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
    解得:x=4,即DE=EH=BF=4,
    则AG=DE=EH=BF=4,
    ∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
    ∴EF2=EG2+GF2=32+12=10,
    故选B.

    【点睛】
    本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
    9、D
    【解析】
    试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.

    考点:平行线的性质;余角和补角.
    10、B
    【解析】
    从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.
    【详解】
    由图形可知,
    S2=(a-b)2+b(a+b)+ab=a2+2b2,
    S1=(a+b)2-S2=2ab-b2,
    ∵S2=2S1,
    ∴a2+2b2=2(2ab﹣b2),
    ∴a2﹣4ab+4b2=0,
    即(a﹣2b)2=0,
    ∴a=2b,
    故选B.
    【点睛】
    本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
    【详解】
    (cm2).
    故答案为.
    考点:1、扇形的面积公式;2、两圆相外切的性质.
    12、1
    【解析】
    ∵MN∥BC,
    ∴△AMN∽△ABC,
    ∴,即,
    ∴MN=1.
    故答案为1.
    13、50
    【解析】
    根据BC是直径得出∠B=∠D=40°,∠BAC=90°,再根据半径相等所对应的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC
    【详解】
    ∵BC是直径,∠D=40°,
    ∴∠B=∠D=40°,∠BAC=90°.
    ∵OA=OB,
    ∴∠BAO=∠B=40°,
    ∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.
    故答案为:50
    【点睛】
    本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键
    14、.
    【解析】
    试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.

    考点:扇形的面积计算.
    15、1
    【解析】
    解:由(x、y、z≠0),解得:x=3z,y=2z,原式===1.故答案为1.
    点睛:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z把x与y表示出来再进行代入求解.
    16、
    【解析】
    分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.
    详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
    根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,
    故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).
    故答案为:16π.
    点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
    17、3
    【解析】
    依据可设a=3k,b=2k,代入化简即可.
    【详解】
    ∵,
    ∴可设a=3k,b=2k,
    ∴=3
    故答案为3.
    【点睛】
    本题主要考查了比例的性质及见比设参的数学思想,组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.

    三、解答题(共7小题,满分69分)
    18、证明见解析.
    【解析】
    (1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,从而可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF.
    (2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.
    【详解】
    证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.
    又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF.∴AF=BC.
    ∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,
    ∴△AFE≌△BCA(HL).∴AC=EF.
    (2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD.
    ∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.
    ∵AC=EF,AC=AD,∴EF=AD.
    ∴四边形ADFE是平行四边形.
    考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.
    19、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.
    【解析】
    (1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
    (2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.
    【详解】
    (1)过A作AE⊥BC于E,
    则四边形AECD是矩形,
    ∴CE=AD=1,AE=CD=3,
    ∵AB=BC,
    ∴BE=AB-1,
    在Rt△ABE中,∵AB2=AE2+BE2,
    ∴AB2=32+(AB-1)2,
    解得:AB=5;
    (2)过P作PF⊥BQ于F,
    ∴BF=BQ=,
    ∴△PBF∽△ABE,
    ∴,
    ∴,
    ∴PB=,
    ∴PA=AB-PB=,
    过P作PG⊥CD于G交AE于M,
    ∴GM=AD=1,
    ∵DC⊥BC
    ∴PG∥BC
    ∴△APM∽△ABE,
    ∴,
    ∴,
    ∴PM=,
    ∴PG=PM+MG==PB,
    ∴圆P与直线DC相切.

    【点睛】
    本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
    20、(1)m=2;y=x+;(2)P点坐标是(﹣,).
    【解析】
    (1)利用待定系数法求一次函数和反比例函数的解析式;
    (2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.
    【详解】
    解:(1)∵反比例函数的图象过点

    ∵点B(﹣1,m)也在该反比例函数的图象上,
    ∴﹣1•m=﹣2,
    ∴m=2;
    设一次函数的解析式为y=kx+b,
    由y=kx+b的图象过点A,B(﹣1,2),则
    解得:
    ∴一次函数的解析式为
    (2)连接PC、PD,如图,设
    ∵△PCA和△PDB面积相等,

    解得:
    ∴P点坐标是

    【点睛】
    本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.
    21、 (1)相等,理由见解析;(2)2;(3).
    【解析】
    (1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
    (2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
    (3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
    【详解】
    解:(1)BF=AE,理由:
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=∠D=90°,
    ∴∠BAE+∠DAE=90°,
    ∵AE⊥BF,
    ∴∠BAE+∠ABF=90°,
    ∴∠ABF=∠DAE,
    在△ABF和△DAE中,
    ∴△ABF≌△DAE,
    ∴BF=AE,
    (2) 如图2,
    过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,

    ∴四边形ABCM是平行四边形,
    ∵∠ABC=90°,
    ∴▱ABCM是矩形,
    ∵AB=BC,
    ∴矩形ABCM是正方形,
    ∴AB=BC=CM,
    同(1)的方法得,△ABD≌△BCG,
    ∴CG=BD,
    ∵点D是BC中点,
    ∴BD=BC=CM,
    ∴CG=CM=AB,
    ∵AB∥CM,
    ∴△AFB∽△CFG,

    (3) 如图3,

    在Rt△ABC中,AB=3,BC=4,
    ∴AC=5,
    ∵点D是BC中点,
    ∴BD=BC=2,
    过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
    ∴四边形ABCN是平行四边形,
    ∵∠ABC=90°,∴▱ABCN是矩形,
    同(1)的方法得,∠BAD=∠CBP,
    ∵∠ABD=∠BCP=90°,
    ∴△ABD∽△BCP,


    ∴CP=
    同(2)的方法,△CFP∽△AFB,


    ∴CF=.
    【点睛】
    本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
    22、(1)90;(2)144度;(3)105,120,75;(4)B
    【解析】
    (1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;
    (2)用360°乘以B对应的百分比可得答案;
    (3)用总人数乘以A、B、C三人对应的百分比可得答案;
    (4)根据加权平均数的定义计算可得.
    【详解】
    解:(1)由条形图知,A演讲得分为90分,
    补全图形如下:

    故答案为90;
    (2)扇图中B同学对应的扇形圆心角为360°×40%=144°,
    故答案为144;
    (3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,
    故答案为105、120、75;
    (4)A的最终得分为=92.5(分),
    B的最终得分为=98(分),
    C的最终得分为=84(分),
    ∴B最终当选,
    故答案为B.
    【点睛】
    本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    23、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).
    【解析】
    (1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;
    (2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;
    ②根据一次函数的性质结合自变量的取值范围即可求解.
    【详解】
    (1)由题意,得,
    解得,
    故a,b的值分别是120,180;
    (2)①由题意,得y=120x+180(40-x),
    化简得y=-60x+7200,
    ∵普通时段的培训学时不会超过其他两个时段总学时的,
    ∴x≤(40-x),
    解得x≤,
    又x≥0,
    ∴0≤x≤;
    ②∵y=-60x+7200,
    k=-60<0,
    ∴y随x的增大而减小,
    ∴x取最大值时,y有最小值,
    ∵0≤x≤;
    ∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.
    24、(1)CF与BD位置关系是垂直,理由见解析;(2)AB≠AC时,CF⊥BD的结论成立,理由见解析;(3)见解析
    【解析】
    (1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长.考虑点D的位置,分两种情况去解答.①点D在线段BC上运动,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易证△AQD∽△DCP,再根据相似三角形的性质求解问题.②点D在线段BC延长线上运动时,由∠BCA=15°,可求出AQ=CQ=1,则DQ=1+x.过A作AQ⊥BC交CB延长线于点Q,则△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根据相似三角形的性质求解问题.
    【详解】
    (1)CF与BD位置关系是垂直;
    证明如下:
    ∵AB=AC,∠ACB=15°,
    ∴∠ABC=15°.
    由正方形ADEF得AD=AF,
    ∵∠DAF=∠BAC=90°,
    ∴∠DAB=∠FAC,
    ∴△DAB≌△FAC(SAS),
    ∴∠ACF=∠ABD.
    ∴∠BCF=∠ACB+∠ACF=90°.
    即CF⊥BD.
    (2)AB≠AC时,CF⊥BD的结论成立.
    理由是:
    过点A作GA⊥AC交BC于点G,
    ∵∠ACB=15°,
    ∴∠AGD=15°,
    ∴AC=AG,
    同理可证:△GAD≌△CAF
    ∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,
    即CF⊥BD.
    (3)过点A作AQ⊥BC交CB的延长线于点Q,
    ①点D在线段BC上运动时,
    ∵∠BCA=15°,可求出AQ=CQ=1.
    ∴DQ=1﹣x,△AQD∽△DCP,
    ∴,
    ∴,
    ∴.
    ②点D在线段BC延长线上运动时,
    ∵∠BCA=15°,
    ∴AQ=CQ=1,
    ∴DQ=1+x.
    过A作AQ⊥BC,
    ∴∠Q=∠FAD=90°,
    ∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,
    ∴∠ADQ=∠AFC′,
    则△AQD∽△AC′F.
    ∴CF⊥BD,
    ∴△AQD∽△DCP,
    ∴,
    ∴,
    ∴.


    【点睛】
    综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.

    相关试卷

    2023-2024学年广西柳州柳北区七校联考九年级数学第一学期期末达标检测试题含答案: 这是一份2023-2024学年广西柳州柳北区七校联考九年级数学第一学期期末达标检测试题含答案,共10页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    广西柳州柳北区七校联考2023-2024学年八上数学期末达标检测试题含答案: 这是一份广西柳州柳北区七校联考2023-2024学年八上数学期末达标检测试题含答案,共6页。试卷主要包含了如果点P,二元一次方程组的解是,式子的值不可能等于等内容,欢迎下载使用。

    广西柳州市柳北区2019年中考数学模拟预测试卷(含解析): 这是一份广西柳州市柳北区2019年中考数学模拟预测试卷(含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map