|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届广西柳州市五城区中考数学五模试卷含解析
    立即下载
    加入资料篮
    2022届广西柳州市五城区中考数学五模试卷含解析01
    2022届广西柳州市五城区中考数学五模试卷含解析02
    2022届广西柳州市五城区中考数学五模试卷含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届广西柳州市五城区中考数学五模试卷含解析

    展开
    这是一份2022届广西柳州市五城区中考数学五模试卷含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若一个多边形的内角和为360°,则这个多边形的边数是(    )
    A.3                                            B.4                                            C.5                                            D.6
    2.函数与在同一坐标系中的大致图象是( )
    A、  B、 C、 D、
    3.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为(  )

    A.(,) B.(2,) C.(,) D.(,3﹣)
    4.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是(  )

    A. B. C. D.
    5.下列实数中,最小的数是(  )
    A. B. C.0 D.
    6.已知关于x的一元二次方程有实数根,则m的取值范围是( )
    A. B. C. D.
    7.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为(  )

    A.1 B.2 C.3 D.4
    8.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为(  )
    A.172×102 B.17.2×103 C.1.72×104 D.0.172×105
    9.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是(  )
    A. B.
    C. D.
    10.已知函数y=的图象如图,当x≥﹣1时,y的取值范围是(  )

    A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥0
    11.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省斤,这些粮食可供9万人吃一年.“”这个数据用科学记数法表示为( )
    A. B. C. D..
    12.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为(  )

    A.28 B.26 C.25 D.22
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是_____.

    14.电子跳蚤游戏盘是如图所示的△ABC,AB=AC=BC=1.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1= CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2= AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3= BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2016与点P2017之间的距离为_________.

    15.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .
    16.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.

    17.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.
    18.在平面直角坐标系xOy中,点A、B为反比例函数 (x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作.如的“理想值”.

    (1)①若点在直线上,则点的“理想值”等于_______;
    ②如图,,的半径为1.若点在上,则点的“理想值”的取值范围是_______.
    (2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;
    (3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值.(要求画图位置准确,但不必尺规作图)
    20.(6分)如图,△ABC中,∠C=90°,AC=BC,∠ABC的平分线BD交AC于点D,DE⊥AB于点E.
    (1)依题意补全图形;
    (2)猜想AE与CD的数量关系,并证明.

    21.(6分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).
    (1)求证:方程有两个不相等的实数根;
    (2)若方程的两个实数根都是整数,求k的值.
    22.(8分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
    (1)求该抛物线的解析式;
    (2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
    (3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
    23.(8分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:
      收集数据
    从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:
    八年级
    78
    86
    74
    81
    75
    76
    87
    70
    75
    90
    75
    79
    81
    70
    74
    80
    86
    69
    83
    77
    九年级
    93
    73
    88
    81
    72
    81
    94
    83
    77
    83
    80
    81
    70
    81
    73
    78
    82
    80
    70
    40
    整理、描述数据
    将成绩按如下分段整理、描述这两组样本数据:
    成绩(x)
    40≤x≤49
    50≤x≤59
    60≤x≤69
    70≤x≤79
    80≤x≤89
    90≤x≤100
    八年级人数
    0
    0
    1
    11
    7
    1
    九年级人数
    1
    0
    0
    7
    10
    2
    (说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)
      分析数据
    两组样本数据的平均数、中位数、众数、方差如表所示:
    年级
    平均数
    中位数
    众数
    方差
    八年级
    78.3
    77.5
    75
    33.6
    九年级
    78
    80.5
    a
    52.1
    (1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)
    24.(10分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).
    (1)求直线AB的函数关系式;
    (2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;
    (3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由

    25.(10分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;
    看法
    频数
    频率
    赞成
    5

    无所谓

    0.1
    反对
    40
    0.8
    (1)本次调查共调查了   人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.

    26.(12分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)

    27.(12分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上
    (1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;
    (2)画出将△ABC向右平移6个单位后得到的△A2B2C2;
    (3)在(1)中,求在旋转过程中△ABC扫过的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    利用多边形的内角和公式求出n即可.
    【详解】
    由题意得:(n-2)×180°=360°,
    解得n=4;
    故答案为:B.
    【点睛】
    本题考查多边形的内角和,解题关键在于熟练掌握公式.
    2、D.
    【解析】
    试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:
    当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;
    当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.
    故选D.
    考点:一次函数和反比例函数的图象.
    3、A
    【解析】
    解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,),∴AC=OB=,∠CAB=10°,∴BC=AC•tan10°=×=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴点D的坐标为(,).故选A.

    4、B
    【解析】
    解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.

    5、B
    【解析】
    根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
    【详解】
    ∵<-2<0<,
    ∴最小的数是-π,
    故选B.
    【点睛】
    此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
    6、C
    【解析】
    解:∵关于x的一元二次方程有实数根,
    ∴△==,
    解得m≥1,
    故选C.
    【点睛】
    本题考查一元二次方程根的判别式.
    7、A
    【解析】
    试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,
    ∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°,
    ∴∠CAD=30°, ∵AD平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD, ∵BC=3, ∴CD=DE=1
    考点:线段垂直平分线的性质
    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将17200用科学记数法表示为1.72×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    9、D
    【解析】
    根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、不是中心对称图形,故此选项错误;
    D、是中心对称图形,故此选项正确;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.
    10、C
    【解析】
    试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题.解:根据反比例函数的性质和图象显示可知:此函数为减函数,x≥-1时,在第三象限内y的取值范围是y≤-1;在第一象限内y的取值范围是y>1.故选C.
    考点:本题考查了反比例函数的性质
    点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=的图象是双曲线,当k>1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k<1时,图象在二、四象限,在每个象限内,y随x的增大而增大
    11、C
    【解析】
    用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
    【详解】
    32400000=3.24×107元.
    故选C.
    【点睛】
    此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
    12、A
    【解析】
    如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.
    【详解】
    如图,

    由题意得:BM=MN(设为λ),CN=DN=3;
    ∵四边形ABCD为矩形,
    ∴BC=AD=9,∠C=90°,MC=9-λ;
    由勾股定理得:λ2=(9-λ)2+32,
    解得:λ=5,
    ∴五边形ABMND的周长=6+5+5+3+9=28,
    故选A.
    【点睛】
    该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,根据概率公式计算即可.
    【详解】
    解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,
    所以恰好选到经过西流湾大桥的路线的概率=.
    故答案为.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.
    14、3
    【解析】
    ∵△ABC为等边三角形,边长为1,根据跳动规律可知,
    ∴P0P1=3,P1P2=2,P2P3=3,P3P4=2,…
    观察规律:当落点脚标为奇数时,距离为3,当落点脚标为偶数时,距离为2,
    ∵2017是奇数,
    ∴点P2016与点P2017之间的距离是3.
    故答案为:3.
    【点睛】考查的是等边三角形的性质,根据题意求出P0P1,P1P2,P2P3,P3P4的值,找出规律是解答此题的关键.
    15、3.55×1.
    【解析】
    科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
    【详解】
    3550000=3.55×1,
    故答案是:3.55×1.
    【点睛】
    考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
    16、 (24001,0)
    【解析】
    分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出 然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标
    详解:∵直线l:

    ∵NM⊥x轴,M1N⊥直线l,


    同理,
    …,

    所以,点的坐标为
    点M2000的坐标为(24001,0).
    故答案为:(24001,0).
    点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.
    17、3.308×1.
    【解析】
    正确用科学计数法表示即可.
    【详解】
    解:33080=3.308×1
    【点睛】
    科学记数法的表示形式为的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.
    18、(1,-4)
    【解析】
    利用旋转的性质即可解决问题.
    【详解】
    如图,

    由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);
    所以,B′(1,-4);
    故答案为(1,-4).
    【点睛】
    本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)①﹣3;②;(2);(3)
    【解析】
    (1)①把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;②由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可.
    【详解】
    (1)①∵点在直线上,
    ∴,
    ∴点的“理想值”=-3,
    故答案为:﹣3.
    ②当点在与轴切点时,点的“理想值”最小为0.
    当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,
    设点Q(x,y),与x轴切于A,与OQ切于Q,
    ∵C(,1),
    ∴tan∠COA==,
    ∴∠COA=30°,
    ∵OQ、OA是的切线,
    ∴∠QOA=2∠COA=60°,
    ∴=tan∠QOA=tan60°=,
    ∴点的“理想值”为,

    故答案为:.
    (2)设直线与轴、轴的交点分别为点,点,
    当x=0时,y=3,
    当y=0时,x+3=0,解得:x=,
    ∴,.
    ∴,,
    ∴tan∠OAB=,
    ∴.
    ∵,
    ∴①如图,作直线.
    当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值.
    作轴于点,
    ∴,
    ∴.
    ∵的半径为1,
    ∴.
    ∴,
    ∴.
    ∴.

    ②如图
    当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值.
    作轴于点,则.
    设直线与直线的交点为.
    ∵直线中,k=,
    ∴,
    ∴,点F与Q重合,
    则.
    ∵的半径为1,
    ∴.
    ∴.
    ∴,
    ∴.
    ∴.

    由①②可得,的取值范围是.
    (3)∵M(2,m),
    ∴M点在直线x=2上,
    ∵,
    ∴LQ取最大值时,=,
    ∴作直线y=x,与x=2交于点N,
    当M与ON和x轴同时相切时,半径r最大,
    根据题意作图如下:M与ON相切于Q,与x轴相切于E,
    把x=2代入y=x得:y=4,
    ∴NE=4,OE=2,ON==6,
    ∴∠MQN=∠NEO=90°,
    又∵∠ONE=∠MNQ,
    ∴,
    ∴,即,
    解得:r=.
    ∴最大半径为.

    【点睛】
    本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论.
    20、 (1)见解析;(2)见解析.
    【解析】
    (1)根据题意画出图形即可;
    (2)利用等腰三角形的性质得∠A=45∘.则∠ADE=∠A=45°,所以AE=DE,再根据角平分线性质得CD=DE,从而得到AE=CD.
    【详解】
    解:(1)如图:

    (2)AE与 CD的数量关系为AE=CD.
    证明:∵∠C=90°,AC=BC,
    ∴∠A=45°.
    ∵DE⊥AB,
    ∴∠ADE=∠A=45°.
    ∴AE=DE,
    ∵BD平分∠ABC,
    ∴CD=DE,
    ∴AE=CD.
    【点睛】
    此题考查等腰三角形的性质,角平分线的性质,解题关键在于根据题意作辅助线.
    21、(3)证明见解析(3)3或﹣3
    【解析】
    (3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.
    【详解】
    证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.
    ∵k为整数,
    ∴(3k﹣3)3>2,即△>2.
    ∴方程有两个不相等的实数根.
    (3)解:∵方程kx3﹣(4k+3)x+3k+3=2为一元二次方程,
    ∴k≠2.
    ∵kx3﹣(4k+3)x+3k+3=2,即[kx﹣(k+3)](x﹣3)=2,
    ∴x3=3,.
    ∵方程的两个实数根都是整数,且k为整数,
    ∴k=3或﹣3.
    【点睛】
    本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.
    22、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
    【解析】
    试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
    (2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
    (3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
    试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
    ∴B(3,0),C(0,3),
    把B、C坐标代入抛物线解析式可得,解得,
    ∴抛物线解析式为y=x2﹣4x+3;
    (2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
    ∴抛物线对称轴为x=2,P(2,﹣1),
    设M(2,t),且C(0,3),
    ∴MC=,MP=|t+1|,PC=,
    ∵△CPM为等腰三角形,
    ∴有MC=MP、MC=PC和MP=PC三种情况,
    ①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
    ②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
    ③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
    综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
    (3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,

    设E(x,x2﹣4x+3),则F(x,﹣x+3),
    ∵0<x<3,
    ∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
    ∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
    ∴当x=时,△CBE的面积最大,此时E点坐标为(,),
    即当E点坐标为(,)时,△CBE的面积最大.
    考点:二次函数综合题.
    23、 (1)81;(2) 108人;(3)见解析.
    【解析】
    (1)根据众数的概念解答;
    (2)求出九年级学生体质健康的优秀率,计算即可;
    (3)分别从不同的角度进行评价.
    【详解】
    解:(1)由测试成绩可知,81分出现的次数最多,
    ∴a=81,
    故答案为:81;
    (2)九年级学生体质健康的优秀率为:,
    九年级体质健康优秀的学生人数为:180×60%=108(人),
    答:估计该校九年级体质健康优秀的学生人数为108人;
    (3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.
    ②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.
    【点睛】
    本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.
    24、(1);(2) (0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.
    【解析】
    (1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.
    (2)用t表示P、M、N 的坐标,由等式得到函数关系式.
    (3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.
    【详解】
    解:(1)x=0时,y=1,
    ∴点A的坐标为:(0,1),
    ∵BC⊥x轴,垂足为点C(3,0),
    ∴点B的横坐标为3,
    当x=3时,y=,
    ∴点B的坐标为(3,),
    设直线AB的函数关系式为y=kx+b, ,
    解得,,
    则直线AB的函数关系式
    (2)当x=t时,y=t+1,
    ∴点M的坐标为(t,t+1),
    当x=t时,
    ∴点N的坐标为
    (0≤t≤3);
    (3)若四边形BCMN为平行四边形,则有MN=BC,
    ∴,
    解得t1=1,t2=2,
    ∴当t=1或2时,四边形BCMN为平行四边形,
    ①当t=1时,MP=,PC=2,
    ∴MC==MN,此时四边形BCMN为菱形,
    ②当t=2时,MP=2,PC=1,
    ∴MC=≠MN,此时四边形BCMN不是菱形.
    【点睛】
    本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用.
    25、(1)50;(2)见解析;(3)2400.
    【解析】
    (1)用反对的频数除以反对的频率得到调查的总人数;
    (2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;
    (3)根据题意列式计算即可.
    【详解】
    解:(1)观察统计表知道:反对的频数为40,频率为0.8,
    故调查的人数为:40÷0.8=50人;
    故答案为:50;
    (2)无所谓的频数为:50﹣5﹣40=5人,
    赞成的频率为:1﹣0.1﹣0.8=0.1;
    看法
    频数
    频率
    赞成
    5
    0.1
    无所谓
    5
    0.1
    反对
    40
    0.8
    统计图为:

    (3)0.8×3000=2400人,
    答:该校持“反对”态度的学生人数是2400人.
    【点睛】
    本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
    26、1米.
    【解析】
    试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.
    试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=1.
    答:塔杆CH的高为1米.

    点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
    27、(1)(1)如图所示见解析;(3)4π+1.
    【解析】
    (1)根据旋转的性质得出对应点位置,即可画出图形;
    (1)利用平移的性质得出对应点位置,进而得出图形;
    (3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.
    【详解】
    (1)如图所示,△A1BC1即为所求;

    (1)如图所示,△A1B1C1即为所求;
    (3)由题可得,△ABC扫过的面积==4π+1.
    【点睛】
    考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.

    相关试卷

    2023年广西柳州市柳城县中考数学一模试卷(含解析): 这是一份2023年广西柳州市柳城县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广西柳州市柳城县中考数学一模试卷(含解析): 这是一份2023年广西柳州市柳城县中考数学一模试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年广西柳州市中考数学一模试卷(含解析): 这是一份2023年广西柳州市中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map