


2022届广西钦州钦州港区六校联考初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
2.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )
A.(2,1) B.(2,0) C.(3,3) D.(3,1)
3.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为( )
A.﹣2 B.4 C.﹣4 D.2
4.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为( )
A. B. C.4 D.2+
5.的相反数是 ( )
A.6 B.-6 C. D.
6.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是( )
A.38 B.39 C.40 D.42
7.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( )
A.1个 B.2个 C.3个 D.4个
8.已知为单位向量,=,那么下列结论中错误的是( )
A.∥ B. C.与方向相同 D.与方向相反
9.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是( )
A. B. C. D.
10.在平面直角坐标系中,点A的坐标是(﹣1,0),点B的坐标是(3,0),在y轴的正半轴上取一点C,使A、B、C三点确定一个圆,且使AB为圆的直径,则点C的坐标是( )
A.(0,) B.(,0) C.(0,2) D.(2,0)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________
12.计算()()的结果等于_____.
13.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.
14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.
15.已知关于x的方程x2+mx+4=0有两个相等的实数根,则实数m的值是______.
16.如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.当△DCE一边与AB平行时,∠ECB的度数为_________________________.
三、解答题(共8题,共72分)
17.(8分)小明和小亮为下周日计划了三项活动,分别是看电影(记为A)、去郊游(记为B)、去图书馆(记为C).他们各自在这三项活动中任选一个,每项活动被选中的可能性相同.
(1)小明选择去郊游的概率为多少;
(2)请用树状图或列表法求小明和小亮的选择结果相同的概率.
18.(8分)解方程:1+
19.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.
(1) 若,求证:;
(2) 若AB=BC.
① 如图2,当点P与E重合时,求的值;
② 如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.
20.(8分)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
21.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.
(1)直接写出点E的坐标(用含t的代数式表示): ;
(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.
22.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.
(1)试探究线段AE与CG的关系,并说明理由.
(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
②当△CDE为等腰三角形时,求CG的长.
23.(12分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF
(1)求证:BF是⊙A的切线.(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
24.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队,现围绕“你最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:
(1)这次参与调查的村民人数为 人;
(2)请将条形统计图补充完整;
(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;
(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动,请用列表或画树状图的方法,求恰好选中“花鼓戏、划龙舟”这两个项目的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
2、A
【解析】
根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.
【详解】
由题意得,△ODC∽△OBA,相似比是,
∴,
又OB=6,AB=3,
∴OD=2,CD=1,
∴点C的坐标为:(2,1),
故选A.
【点睛】
本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.
3、C
【解析】
试题分析:作AC⊥x轴于点C,作BD⊥x轴于点D.
则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,
∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=(tanA)2=2,
又∵S△AOC=×2=1,∴S△OBD=2,∴k=-1.
故选C.
考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征.
4、B
【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
【详解】
如图:
BC=AB=AC=1,
∠BCB′=120°,
∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
5、D
【解析】
根据相反数的定义解答即可.
【详解】
根据相反数的定义有:的相反数是.
故选D.
【点睛】
本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.
6、B
【解析】
根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
【详解】
解:由于共有6个数据,
所以中位数为第3、4个数的平均数,即中位数为=39,
故选:B.
【点睛】
本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
7、C
【解析】
根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.
【详解】
解:在同一平面内,
①过两点有且只有一条直线,故①正确;
②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;
③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;
④经过直线外一点有且只有一条直线与已知直线平行,故④正确,
综上所述,正确的有①③④共3个,
故选C.
【点睛】
本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.
8、C
【解析】
由向量的方向直接判断即可.
【详解】
解:为单位向量,=,所以与方向相反,所以C错误,
故选C.
【点睛】
本题考查了向量的方向,是基础题,较简单.
9、D
【解析】
A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;
B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;
C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;
D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.
故选D.
10、A
【解析】
直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.
【详解】
如图,连结AC,CB.
依△AOC∽△COB的结论可得:OC2=OA×OB,
即OC2=1×3=3,
解得:OC=或− (负数舍去),
故C点的坐标为(0, ).
故答案选:A.
【点睛】
本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2.
【解析】
试题分析:已知方程x2-2x=0有两个相等的实数根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.
考点:一元二次方程根的判别式.
12、4
【解析】
利用平方差公式计算.
【详解】
解:原式=()2-()2
=7-3
=4.
故答案为:4.
【点睛】
本题考查了二次根式的混合运算.
13、1
【解析】
根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
【详解】
∵DE垂直平分AC,∠A=30°,
∴AE=CE,∠ACE=∠A=30°,
∵∠ACB=80°,
∴∠BCE=80°-30°=1°.
故答案为:1.
14、1;
【解析】
分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.
详解:∵根据作图法则可得:CF⊥AB, ∵∠ACB=90°,∠A=30°,BC=4,
∴AB=2BC=8, ∵∠CFB=90°,∠B=10°, ∴BF=BC=2,
∴AF=AB-BF=8-2=1.
点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.
15、±4
【解析】
分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m的方程,求出方程的解即可得到m的值.
详解:∵方程有两个相等的实数根,
∴
解得:
故答案为
点睛:考查一元二次方程根的判别式,
当时,方程有两个不相等的实数根.
当时,方程有两个相等的实数根.
当时,方程没有实数根.
16、15°、30°、60°、120°、150°、165°
【解析】
分析:根据CD∥AB,CE∥AB和DE∥AB三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.
详解:①、∵CD∥AB, ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°,
∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;
CD∥AB时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°
②如图1,CE∥AB,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;
CE∥AB时,∠ECB=∠B=60°.
③如图2,DE∥AB时,延长CD交AB于F, 则∠BFC=∠D=45°,
在△BCF中,∠BCF=180°-∠B-∠BFC,=180°-60°-45°=75°,
∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.
点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.
三、解答题(共8题,共72分)
17、(1);(2).
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意列表,然后求得所有等可能的结果与小明和小亮选择结果相同的情况,再利用概率公式即可求得答案
【详解】
(1)∵小明分别是从看电影(记为A)、去郊游(记为B)、去图书馆(记为C)的一个景点去游玩,
∴小明选择去郊游的概率=;
(2)列表得:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
C
(A,C)
(B,C)
(C,C)
由列表可知两人选择的方案共有9种等可能的结果,其中选择同种方案有3种,
所以小明和小亮的选择结果相同的概率==.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
18、无解.
【解析】
两边都乘以x(x-3),去分母,化为整式方程求解即可.
【详解】
解:去分母得:x2﹣3x﹣x2=3x﹣18,
解得:x=3,
经检验x=3是增根,分式方程无解.
【点睛】
题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.
19、(1)证明见解析;(2)①;②3.
【解析】
(1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.
(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;
② 延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB= ,根据勾股定理得到
,根据等腰直角三角形的性质得到.
【详解】
解:(1) 过点A作AF⊥BP于F
∵AB=AP
∴BF=BP,
∵Rt△ABF∽Rt△BCE
∴
∴BP=CE.
(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G
∵AB=BC
∴△ABG≌△BCP(AAS)
∴BG=CP
设BG=1,则PG=PC=1
∴BC=AB=
在Rt△ABF中,由射影定理知,AB2=BG·BF=5
∴BF=5,PF=5-1-1=3
∴
② 延长BF、AD交于点G,过点A作AH⊥BE于H
∵AB=BC
∴△ABH≌△BCE(AAS)
设BH=BP=CE=1
∵
∴PG=,BG=
∵AB2=BH·BG
∴AB=
∴
∵AF平分∠PAD,AH平分∠BAP
∴∠FAH=∠BAD=45°
∴△AFH为等腰直角三角形
∴
【点睛】
考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.
20、(1)作图见解析;(2)证明见解析;
【解析】
(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
【详解】
解:(1)如图:
(2)∵四边形ABCD为矩形,
∴AD∥BC,
∴∠ADB=∠CBD,
∵EF垂直平分线段BD,
∴BO=DO,
在△DEO和三角形BFO中,
,
∴△DEO≌△BFO(ASA),
∴DE=BF.
考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
21、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.
【解析】
(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,
由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,
∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,
又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,
在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),
∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),
(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,
∴AD=t(4﹣t),
∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,
∵EG⊥x轴、FP⊥x轴,且EG=FP,
∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,
∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,
∴当t=2时,S有最小值是16;
(3)①假设∠FBD为直角,则点F在直线BC上,
∵PF=OP<AB,
∴点F不可能在BC上,即∠FBD不可能为直角;
②假设∠FDB为直角,则点D在EF上,
∵点D在矩形的对角线PE上,
∴点D不可能在EF上,即∠FDB不可能为直角;
③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,
如图2,作FH⊥BD于点H,
则FH=PA,即4﹣t=6﹣t,方程无解,
∴假设不成立,即△BDF不可能是等腰直角三角形.
22、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
【解析】
试题分析:证明≌即可得出结论.
①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
分成三种情况讨论即可.
试题解析:(1)
理由是:如图1,∵四边形EFGD是正方形,
∴
∵四边形ABCD是正方形,
∴
∴
∴≌
∴
∵
∴
∴ 即
(2)①位置关系保持不变,数量关系变为
理由是:如图2,连接EG、DF交于点O,连接OC,
∵四边形EFGD是矩形,
∴
Rt中,OG=OF,
Rt中,
∴
∴D、E、F、C、G在以点O为圆心的圆上,
∵
∴DF为的直径,
∵
∴EG也是的直径,
∴∠ECG=90°,即
∴
∵
∴
∵
∴
∴
②由①知:
∴设
分三种情况:
(i)当时,如图3,过E作于H,则EH∥AD,
∴
∴ 由勾股定理得:
∴
(ii)当时,如图1,过D作于H,
∵
∴
∴
∴
∴
∴
(iii)当时,如图5,
∴
∴
综上所述,当为等腰三角形时,CG的长为或或.
点睛:两组角对应,两三角形相似.
23、(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE为菱形;证明见解析;
【解析】
分析(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;
(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.
详解:(1)证明:∵EF∥AB
∴∠FAB=∠EFA,∠CAB=∠E
∵AE=AF
∴∠EFA =∠E
∴∠FAB=∠CAB
∵AC=AF,AB=AB
∴△ABC≌△ABF
∴∠AFB=∠ACB=90°, ∴BF是⊙A的切线.
(2)当∠CAB=60°时,四边形ADFE为菱形.
理由:∵EF∥AB
∴∠E=∠CAB=60°
∵AE=AF
∴△AEF是等边三角形
∴AE=EF,
∵AE=AD
∴EF=AD
∴四边形ADFE是平行四边形
∵AE=EF
∴平行四边形ADFE为菱形.
点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.
24、 (1)120;(2)42人;(3) 90°;(4)
【解析】
(1)直接利用腰鼓所占比例以及条形图中人数即可得出这次参与调查的村民人数;
(2)利用条形统计图以及样本数量得出喜欢广场舞的人数;
(3)利用“划龙舟”人数在样本中所占比例得出“划龙舟”所在扇形的圆心角的度数;
(4)利用树状图法列举出所有的可能进而得出概率.
【详解】
(1)这次参与调查的村民人数为:24÷20%=120(人);
故答案为:120;
(2)喜欢广场舞的人数为:120﹣24﹣15﹣30﹣9=42(人),
如图所示:
;
(3)扇形统计图中“划龙舟”所在扇形的圆心角的度数为:×360°=90°;
(4)如图所示:
,
一共有12种可能,恰好选中“花鼓戏、划龙舟”这两个项目的有2种可能,
故恰好选中“花鼓戏、划龙舟”这两个项目的概率为:.
【点睛】
此题主要考查了扇形统计图以及条形统计图的应用和树状图法求概率,正确列举出所有可能是解题关键.
2023-2024学年广西钦州钦州港区六校联考九年级数学第一学期期末教学质量检测试题含答案: 这是一份2023-2024学年广西钦州钦州港区六校联考九年级数学第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知方程的两根为,则的值为,下列事件中,是随机事件的是等内容,欢迎下载使用。
2023-2024学年广西钦州钦州港区六校联考八上数学期末学业水平测试模拟试题含答案: 这是一份2023-2024学年广西钦州钦州港区六校联考八上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了下列命题是假命题的是,已知点与关于轴对称,则的值为,若点A,若成立,在下列不等式成立的是等内容,欢迎下载使用。
2022-2023学年广西钦州钦州港区六校联考七下数学期末教学质量检测试题含答案: 这是一份2022-2023学年广西钦州钦州港区六校联考七下数学期末教学质量检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,无论取什么数,总有意义的分式是,的值为,已知,下列代数式变形正确的是等内容,欢迎下载使用。