广西南宁市天桃实验校2022年初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()
A.30° B.40°
C.60° D.70°
2.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是( )
A. B.
C. D.
3.如果,那么( )
A. B. C. D.
4.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是( )
A. B. C. D.
5.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于( )
A. B. C. D.
6.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
A. B. C. D.
7.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )
A. B. C. D.
8.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
A.有两个不相等实数根 B.有两个相等实数根
C.有且只有一个实数根 D.没有实数根
9.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个
A.1 B.2 C.3 D.4
10.将一把直尺与一块三角板如图所示放置,若则∠2的度数为( )
A.50° B.110° C.130° D.150°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
12.如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.
13.已知△ABC中,BC=4,AB=2AC,则△ABC面积的最大值为_______.
14.如图,直线经过、两点,则不等式的解集为_______.
15.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.
16.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程).
三、解答题(共8题,共72分)
17.(8分)小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C处测得树AB顶端A的仰角为30°,沿着CB方向向大树行进10米到达点D,测得树AB顶端A的仰角为45°,又测得树AB倾斜角∠1=75°.
(1)求AD的长.
(2)求树长AB.
18.(8分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0
(1)求点A、B、D的坐标;
(2)若△AOD与△BPC相似,求a的值;
(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.
19.(8分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
20.(8分)如图,己知AB是的直径,C为圆上一点,D是的中点,于H,垂足为H,连交弦于E,交于F,联结.
(1)求证:.
(2)若,求的长.
21.(8分)已知抛物线y=ax2+bx+c.
(Ⅰ)若抛物线的顶点为A(﹣2,﹣4),抛物线经过点B(﹣4,0)
①求该抛物线的解析式;
②连接AB,把AB所在直线沿y轴向上平移,使它经过原点O,得到直线l,点P是直线l上一动点.
设以点A,B,O,P为顶点的四边形的面积为S,点P的横坐标为x,当4+6≤S≤6+8时,求x的取值范围;
(Ⅱ)若a>0,c>1,当x=c时,y=0,当0<x<c时,y>0,试比较ac与l的大小,并说明理由.
22.(10分)如图,在平面直角坐标系中,A为y轴正半轴上一点,过点A作x轴的平行线,交函数的图象于B点,交函数的图象于C,过C作y轴和平行线交BO的延长线于D.
(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;
(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;
(3)在(1)条件下,四边形AODC的面积为多少?
23.(12分)如图①,AB是⊙O的直径,CD为弦,且AB⊥CD于E,点M为上一动点(不包括A,B两点),射线AM与射线EC交于点F.
(1)如图②,当F在EC的延长线上时,求证:∠AMD=∠FMC.
(2)已知,BE=2,CD=1.
①求⊙O的半径;
②若△CMF为等腰三角形,求AM的长(结果保留根号).
24.如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
∵AB∥CD,∠A=70°,
∴∠1=∠A=70°,
∵∠1=∠C+∠E,∠C=40°,
∴∠E=∠1﹣∠C=70°﹣40°=30°.
故选A.
2、D
【解析】
此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.
【详解】
解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,
又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.
故选D.
点评:本题考核立意相对较新,考核了学生的空间想象能力.
3、B
【解析】
试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.
故选B
点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.
4、A
【解析】
解:∵AE平分∠BAD,
∴∠DAE=∠BAE;
又∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BEA=∠DAE=∠BAE,
∴AB=BE=6,
∵BG⊥AE,垂足为G,
∴AE=2AG.
在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
∴AG==2,
∴AE=2AG=4;
∴S△ABE=AE•BG=.
∵BE=6,BC=AD=9,
∴CE=BC﹣BE=9﹣6=3,
∴BE:CE=6:3=2:1,
∵AB∥FC,
∴△ABE∽△FCE,
∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
故选A.
【点睛】
本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
5、A
【解析】
此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:, 解得:a=1, 经检验,a=1是原分式方程的解,故本题选A.
6、B
【解析】
试题解析:列表如下:
∴共有20种等可能的结果,P(一男一女)=.
故选B.
7、A
【解析】
解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.
故选A.
8、A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
9、D
【解析】
先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
【详解】
解:∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形,选项①正确;
若∠BAC=90°,
∴平行四边形AEDF为矩形,选项②正确;
若AD平分∠BAC,
∴∠EAD=∠FAD,
又DE∥CA,∴∠EDA=∠FAD,
∴∠EAD=∠EDA,
∴AE=DE,
∴平行四边形AEDF为菱形,选项③正确;
若AB=AC,AD⊥BC,
∴AD平分∠BAC,
同理可得平行四边形AEDF为菱形,选项④正确,
则其中正确的个数有4个.
故选D.
【点睛】
此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
10、C
【解析】
如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.
【详解】
∵EF∥GH,∴∠FCD=∠2,
∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,
∴∠2=∠FCD=130°,
故选C.
【点睛】
本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
试题解析:∵在△ABC中,∠C=90°,
∴∠A+∠B=90°,
∴cosB=sinA=.
考点:互余两角三角函数的关系.
12、16
【解析】
根据题意得S△BDE:S△OCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.
【详解】
解:设D(a,b)则A(a,0),B(a,2b)
∵S△BDE:S△OCE=1:9
∴BD:OC=1:3
∴C(0,3b)
∴△COE高是OA的,
∴S△OCE=3ba× =9
解得ab=8
k=a×2b=2ab=2×8=16
故答案为16.
【点睛】
此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.
13、
【解析】
设AC=x,则AB=2x,根据面积公式得S△ABC=2x ,由余弦定理求得 cosC代入化简S△ABC= ,由三角形三边关系求得 ,由二次函数的性质求得S△ABC取得最大值.
【详解】
设AC=x,则AB=2x,根据面积公式得:c= =2x.由余弦定理可得: ,
∴S△ABC=2x=2x=
由三角形三边关系有 ,解得,
故当时, 取得最大值,
故答案为: .
【点睛】
本题主要考查了余弦定理和面积公式在解三角形中的应用,考查了二次函数的性质,考查了计算能力,当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.
14、-1<X<2
【解析】
经过点A,
∴不等式x>kx+b>-2的解集为.
15、﹣2
【解析】
∵反比例函数的图象过点A(m,3),
∴,解得.
16、π(x+5)1=4πx1.
【解析】
根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.
【详解】
解:设小圆的半径为x米,则大圆的半径为(x+5)米,
根据题意得:π(x+5)1=4πx1,
故答案为π(x+5)1=4πx1.
【点睛】
本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.
三、解答题(共8题,共72分)
17、(1);(2).
【解析】
试题分析:(1)过点A作AE⊥CB于点E,设AE=x,分别表示出CE、DE,再由CD=10,可得方程,解出x的值,在Rt△ADE中可求出AD;
(2)过点B作BF⊥AC于点F,设BF=y,分别表示出CF、AF,解出y的值后,在Rt△ABF中可求出AB的长度.
试题解析:(1)如图,过A作AH⊥CB于H,设AH=x,CH=x,DH=x.
∵CH―DH=CD,∴x―x=10,∴x=.
∵∠ADH=45°,∴AD=x=.
(2)如图,过B作BM ⊥AD于M.
∵∠1=75°,∠ADB=45°,∴∠DAB=30°.
设MB=m,∴AB=2m,AM=m,DM=m.
∵AD=AM+DM,∴=m+m.∴m=.∴AB=2m=.
18、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.
【解析】
【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).
(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得, 解得:a= 3(舍去);
②△AOD∽△CPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;
(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.
【详解】(1)∵y=(x-a)(x-3)(0 ∴A(a,0),B(3,0),
当x=0时,y=3a,
∴D(0,3a);
(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=,AO=a,OD=3a,
当x= 时,y=- ,
∴C(,-),
∴PB=3-=,PC=,
①当△AOD∽△BPC时,
∴,
即 ,
解得:a= 3(舍去);
②△AOD∽△CPB,
∴,
即 ,
解得:a1=3(舍),a2= .
综上所述:a的值为;
(3)能;连接BD,取BD中点M,
∵D、B、O三点共圆,且BD为直径,圆心为M(,a),
若点C也在此圆上,
∴MC=MB,
∴ ,
化简得:a4-14a2+45=0,
∴(a2-5)(a2-9)=0,
∴a2=5或a2=9,
∴a1=,a2=-,a3=3(舍),a4=-3(舍),
∵0 ∴a=,
∴当a=时,D、O、C、B四点共圆.
【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.
19、(1)y关于x的函数解析式为;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
【解析】
分析:(1)应用待定系数法分段求函数解析式;
(2)观察图象可得;
(3)代入临界值y=10即可.
详解:(1)设线段AB解析式为y=k1x+b(k≠0)
∵线段AB过点(0,10),(2,14)
代入得
解得
∴AB解析式为:y=2x+10(0≤x<5)
∵B在线段AB上当x=5时,y=20
∴B坐标为(5,20)
∴线段BC的解析式为:y=20(5≤x<10)
设双曲线CD解析式为:y=(k2≠0)
∵C(10,20)
∴k2=200
∴双曲线CD解析式为:y=(10≤x≤24)
∴y关于x的函数解析式为:
(2)由(1)恒温系统设定恒温为20°C
(3)把y=10代入y=中,解得,x=20
∴20-10=10
答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.
20、(1)证明见解析;(2)
【解析】
(1)由题意推出再结合,可得△BHE~△BCO.
(2)结合△BHE~△BCO ,推出带入数值即可.
【详解】
(1)证明:∵为圆的半径,是的中点,
∴,,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
又∵,
∴∽.
(2)∵∽,
∴,
∵,,
∴得,
解得,
∴.
【点睛】
本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.
21、(Ⅰ)①y=x2+3x②当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤(Ⅱ)ac≤1
【解析】
(I)①由抛物线的顶点为A(-2,-3),可设抛物线的解析式为y=a(x+2)2-3,代入点B的坐标即可求出a值,此问得解,②根据点A、B的坐标利用待定系数法可求出直线AB的解析式,进而可求出直线l的解析式,分点P在第二象限及点P在第四象限两种情况考虑:当点P在第二象限时,x<0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,当点P在第四象限时,x>0,通过分割图形求面积法结合3+6≤S≤6+2,即可求出x的取值范围,综上即可得出结论,(2)由当x=c时y=0,可得出b=-ac-1,由当0<x<c时y>0,可得出抛物线的对称轴x=≥c,进而可得出b≤-2ac,结合b=-ac-1即可得出ac≤1.
【详解】
(I)①设抛物线的解析式为y=a(x+2)2﹣3,
∵抛物线经过点B(﹣3,0),
∴0=a(﹣3+2)2﹣3,
解得:a=1,
∴该抛物线的解析式为y=(x+2)2﹣3=x2+3x.
②设直线AB的解析式为y=kx+m(k≠0),
将A(﹣2,﹣3)、B(﹣3,0)代入y=kx+m,
得:,解得:,
∴直线AB的解析式为y=﹣2x﹣2.
∵直线l与AB平行,且过原点,
∴直线l的解析式为y=﹣2x.
当点P在第二象限时,x<0,如图所示.
S△POB=×3×(﹣2x)=﹣3x,S△AOB=×3×3=2,
∴S=S△POB+S△AOB=﹣3x+2(x<0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围是≤x≤.
当点P′在第四象限时,x>0,
过点A作AE⊥x轴,垂足为点E,过点P′作P′F⊥x轴,垂足为点F,则
S四边形AEOP′=S梯形AEFP′﹣S△OFP′=•(x+2)﹣•x•(2x)=3x+3.
∵S△ABE=×2×3=3,
∴S=S四边形AEOP′+S△ABE=3x+2(x>0).
∵3+6≤S≤6+2,
∴,即,
解得:≤x≤,
∴x的取值范围为≤x≤.
综上所述:当3+6≤S≤6+2时,x的取值范围为是≤x≤或≤x≤.
(II)ac≤1,理由如下:
∵当x=c时,y=0,
∴ac2+bc+c=0,
∵c>1,
∴ac+b+1=0,b=﹣ac﹣1.
由x=c时,y=0,可知抛物线与x轴的一个交点为(c,0).
把x=0代入y=ax2+bx+c,得y=c,
∴抛物线与y轴的交点为(0,c).
∵a>0,
∴抛物线开口向上.
∵当0<x<c时,y>0,
∴抛物线的对称轴x=﹣≥c,
∴b≤﹣2ac.
∵b=﹣ac﹣1,
∴﹣ac﹣1≤﹣2ac,
∴ac≤1.
【点睛】
本题主要考查了待定系数法求二次(一次)函数解析式、三角形的面积、梯形的面积、解一元一次不等式组、二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)①巧设顶点式,代入点B的坐标求出a值,②分点P在第二象限及点P在第四象限两种情况找出x的取值范围,(2)根据二次函数图象上点的坐标特征结合二次函数的性质,找出b=-ac-1及b≤-2ac.
22、(1)线段AB与线段CA的长度之比为;(2)线段AB与线段CA的长度之比为;(3)1.
【解析】
试题分析:
(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;
(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;
(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.
试题解析:
(1)∵A(0,2),BC∥x轴,
∴B(﹣1,2),C(3,2),
∴AB=1,CA=3,
∴线段AB与线段CA的长度之比为;
(2)∵B是函数y=﹣(x<0)的一点,C是函数y=(x>0)的一点,
∴B(﹣,a),C(,a),
∴AB=,CA=,
∴线段AB与线段CA的长度之比为;
(3)∵=,
∴=,
又∵OA=a,CD∥y轴,
∴,
∴CD=4a,
∴四边形AODC的面积为=(a+4a)×=1.
23、(1)详见解析;(2)2;②1或
【解析】
(1)想办法证明∠AMD=∠ADC,∠FMC=∠ADC即可解决问题;
(2)①在Rt△OCE中,利用勾股定理构建方程即可解决问题;
②分两种情形讨论求解即可.
【详解】
解:(1)证明:如图②中,连接AC、AD.
∵AB⊥CD,
∴CE=ED,
∴AC=AD,
∴∠ACD=∠ADC,
∵∠AMD=∠ACD,
∴∠AMD=∠ADC,
∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,
∴∠FMC=∠ADC,
∴∠FMC=∠ADC,
∴∠FMC=∠AMD.
(2)解:①如图②﹣1中,连接OC.设⊙O的半径为r.
在Rt△OCE中,∵OC2=OE2+EC2,
∴r2=(r﹣2)2+42,
∴r=2.
②∵∠FMC=∠ACD>∠F,
∴只有两种情形:MF=FC,FM=MC.
如图③中,当FM=FC时,易证明CM∥AD,
∴,
∴AM=CD=1.
如图④中,当MC=MF时,连接MO,延长MO交AD于H.
∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,
∴∠ADM=∠MAD,
∴MA=MD,
∴,
∴MH⊥AD,AH=DH,
在Rt△AED中,AD=,
∴AH=,
∵tan∠DAE=,
∴OH=,
∴MH=2+,
在Rt△AMH中,AM=.
【点睛】
本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积.
24、(1)10;(2)0.9;(3)44%
【解析】
(1)把条形统计图中每天的访问量人数相加即可得出答案;
(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;
(3)根据增长率的算数列出算式,再进行计算即可.
【详解】
(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);
故答案为10;
(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,
∴星期日学生日访问总量为:3×30%=0.9(万人次);
故答案为0.9;
(3)周六到周日学生访问该网站的日平均增长率为:=44%;
故答案为44%.
考点:折线统计图;条形统计图
广西壮族自治区南宁市天桃实验校2022年中考联考数学试卷含解析: 这是一份广西壮族自治区南宁市天桃实验校2022年中考联考数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
广西南宁市天桃实验校2021-2022学年中考适应性考试数学试题含解析: 这是一份广西南宁市天桃实验校2021-2022学年中考适应性考试数学试题含解析,共17页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
北京师范大亚太实验校2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份北京师范大亚太实验校2022年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列图形是中心对称图形的是,定义,如图所示的几何体的俯视图是等内容,欢迎下载使用。