2022届广东省江门市恩平市中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )
A.t< B.t> C.t≤ D.t≥
2.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是( )
A.主视图是中心对称图形
B.左视图是中心对称图形
C.主视图既是中心对称图形又是轴对称图形
D.俯视图既是中心对称图形又是轴对称图形
3.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是( )
A.0 B. C.2+ D.2﹣
4.如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
5.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )
A. B. C. D.
6.﹣22×3的结果是( )
A.﹣5 B.﹣12 C.﹣6 D.12
7.实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )
A.a+b>0 B.a-b<0 C.<0 D.>
8.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于( )
A.2 B.3 C. D.
9.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是( )
A.将l1向左平移2个单位 B.将l1向右平移2个单位
C.将l1向上平移2个单位 D.将l1向下平移2个单位
10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.
A.6055 B.6056 C.6057 D.6058
二、填空题(共7小题,每小题3分,满分21分)
11.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为;③当AD=2时,EF与半圆相切;④若点F恰好落在BC上,则AD=;⑤当点D从点A运动到点B时,线段EF扫过的面积是.其中正确结论的序号是 .
12.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_____.
13.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.
14.如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E的坐标是______.
15.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两
点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”
所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四
边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
16.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
班级
平均分
中位数
方差
甲班
乙班
数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
这次数学测试成绩中,甲、乙两个班的平均水平相同;
甲班学生中数学成绩95分及以上的人数少;
乙班学生的数学成绩比较整齐,分化较小.
上述评估中,正确的是______填序号
17.在△ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于__(结果用、的线性组合表示).
三、解答题(共7小题,满分69分)
18.(10分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
19.(5分)计算:
(1)
(2)
20.(8分)已知:如图.D是的边上一点,,交于点M,.
(1)求证:;
(2)若,试判断四边形的形状,并说明理由.
21.(10分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3台
5台
1800元
第二周
4台
10台
3100元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
22.(10分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).
(1)求反比例函数和一次函数的表达式;
(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.
23.(12分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.
24.(14分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.
【详解】
由题意可得:﹣x+2=,
所以x2﹣2x+1﹣6t=0,
∵两函数图象有两个交点,且两交点横坐标的积为负数,
∴
解不等式组,得t>.
故选:B.
点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.
2、D
【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.
【详解】
解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.
【点睛】
本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.
3、C
【解析】
把x的值代入代数式,运用完全平方公式和平方差公式计算即可
【详解】
解:当x=2﹣时,
(7+4)x2+(2+)x+
=(7+4)(2﹣)2+(2+)(2﹣)+
=(7+4)(7-4)+1+
=49-48+1+
=2+
故选:C.
【点睛】
此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.
4、A
【解析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
5、B
【解析】
连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明∠BFC=90°,最后利用勾股定理求得CF=.
【详解】
连接BF,由折叠可知AE垂直平分BF,
∵BC=6,点E为BC的中点,
∴BE=3,
又∵AB=4,
∴AE==5,
∵,
∴,
∴BH=,则BF= ,
∵FE=BE=EC,
∴∠BFC=90°,
∴CF== .
故选B.
【点睛】
本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
6、B
【解析】
先算乘方,再算乘法即可.
【详解】
解:﹣22×3=﹣4×3=﹣1.
故选:B.
【点睛】
本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.
7、C
【解析】
根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.
【详解】
解:由数轴,得b<-1,0<a<1.
A、a+b<0,故A错误;
B、a-b>0,故B错误;
C、<0,故C符合题意;
D、a2<1<b2,故D错误;
故选C.
【点睛】
本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.
8、A
【解析】
分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.
详解:如图,
∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,
∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,
∵将△ABC沿BC边上的中线AD平移得到△A'B'C',
∴A′E∥AB,
∴△DA′E∽△DAB,
则,即,
解得A′D=2或A′D=-(舍),
故选A.
点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.
9、C
【解析】
根据“上加下减”的原则求解即可.
【详解】
将函数y=2x﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y=2x.
故选:C.
【点睛】
本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.
10、D
【解析】
设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
【详解】
设第n个图形有an个〇(n为正整数),
观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
∴an=1+3n(n为正整数),
∴a2019=1+3×2019=1.
故选:D.
【点睛】
此题考查规律型:图形的变化,解题关键在于找到规律
二、填空题(共7小题,每小题3分,满分21分)
11、①③⑤.
【解析】
试题分析:①连接CD,如图1所示,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴结论“CE=CF”正确;
②当CD⊥AB时,如图2所示,∵AB是半圆的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为.∴结论“线段EF的最小值为”错误;
③当AD=2时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切,∴结论“EF与半圆相切”正确;
④当点F恰好落在上时,连接FB、AF,如图4所示,∵点E与点D关于AC对称,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圆的直径,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴结论“AD=”错误;
⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,∴EF扫过的图形就是图5中阴影部分,∴S阴影=2S△ABC=2×AC•BC=AC•BC=4×=,∴EF扫过的面积为,∴结论“EF扫过的面积为”正确.
故答案为①③⑤.
考点:1.圆的综合题;2.等边三角形的判定与性质;3.切线的判定;4.相似三角形的判定与性质.
12、1
【解析】
根据三视图的定义求解即可.
【详解】
主视图是第一层是三个小正方形,第二层右边一个小正方形,主视图的面积是4,
俯视图是三个小正方形,俯视图的面积是3,
左视图是下边一个小正方形,第二层一个小正方形,左视图的面积是2,
几何体的三视图的面积之和是4+3+2=1,
故答案为1.
【点睛】
本题考查了简单组合体的三视图,利用三视图的定义是解题关键.
13、a≥﹣1且a≠1
【解析】
利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.
【详解】
根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.
故答案为a≥﹣1且a≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
14、(,)
【解析】
由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.
【详解】
解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,
∴OA:OD=2:3,
∵点A的坐标为(1,0),
即OA=1,
∴OD=,
∵四边形ODEF是正方形,
∴DE=OD=.
∴E点的坐标为:(,).
故答案为:(,).
【点睛】
此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.
15、A
【解析】
试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;
②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;
③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.
故选A.
考点:1.反比例函数综合题;2.动点问题的函数图象.
16、
【解析】
根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.
【详解】
解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,
∴这次数学测试成绩中,甲、乙两个班的平均水平相同;
故正确;
∵甲班的中位数是95.5分,乙班的中位数是90.5分,
甲班学生中数学成绩95分及以上的人数多,
故错误;
∵甲班的方差是41.25分,乙班的方差是36.06分,
甲班的方差大于乙班的方差,
乙班学生的数学成绩比较整齐,分化较小;
故正确;
上述评估中,正确的是;
故答案为:.
【点睛】
本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.
17、
【解析】
根据三角形法则求出即可解决问题;
【详解】
如图,
∵=, =,
∴=+=-,
∵BD=BC,
∴=.
故答案为.
【点睛】
本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
三、解答题(共7小题,满分69分)
18、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
【解析】
(1)参加丙组的人数为21人;
(2)21÷10%=10人,则乙组人数=10-21-11=10人,
如图:
(3)设需从甲组抽调x名同学到丙组,
根据题意得:3(11-x)=21+x
解得x=1.
答:应从甲抽调1名学生到丙组
(1)直接根据条形统计图获得数据;
(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
19、(1);(2)1.
【解析】
(1)根据二次根式的混合运算法则即可;
(2)根据特殊角的三角函数值即可计算.
【详解】
解:(1)原式=
;
(2)原式
.
【点睛】
本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.
20、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.
【解析】
(1)根据平行得出∠DAM=∠NCM,根据ASA推出△AMD≌△CMN,得出AD=CN,推出四边形ADCN是平行四边形即可;
(2)根据∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC求出∠MCD=∠MDC,推出MD=MC,求出MD=MN=MA=MC,推出AC=DN,根据矩形的判定得出即可.
【详解】
证明:(1)∵CN∥AB,
∴∠DAM=∠NCM,
∵在△AMD和△CMN中,
∠DAM=∠NCM
MA=MC
∠DMA=∠NMC,
∴△AMD≌△CMN(ASA),
∴AD=CN,
又∵AD∥CN,
∴四边形ADCN是平行四边形,
∴CD=AN;
(2)解:四边形ADCN是矩形,
理由如下:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,
∴∠MCD=∠MDC,
∴MD=MC,
由(1)知四边形ADCN是平行四边形,
∴MD=MN=MA=MC,
∴AC=DN,
∴四边形ADCN是矩形.
【点睛】
本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中.
21、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
【解析】
(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
【详解】
(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
依题意,得解得
答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
依题意,得200a+170(30-a)≤5400,
解得a≤10.
答:A种型号的电风扇最多能采购10台.
(3)依题意,有(250-200)a+(210-170)(30-a)=1400,
解得a=20.
∵a≤10,
∴在(2)的条件下超市不能实现利润为1400元的目标.
【点睛】
本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
22、(1)y=;y=x-2;(2)(0,0)或(4,0)
【解析】
试题分析:(1)利用待定系数法即可求得函数的解析式;
(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.
试题解析:(1)∵反比例函数y=(m≠0)的图象过点A(1,1),
∴1=
∴m=1.
∴反比例函数的表达式为y=.
∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).
∴,
解得:,
∴一次函数的表达式为y=x-2;
(2)令y=0,∴x-2=0,x=2,
∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).
∵S△ABP=1,
PC×1+PC×2=1.
∴PC=2,
∴点P的坐标为(0,0)、(4,0).
【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S△ACP+S△BCP列方程是关键.
23、(1);(2)
【解析】
(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.
【详解】
(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,
∴小明选择去白鹿原游玩的概率=;
(2)画树状图分析如下:
两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,
所以小明和小华都选择去秦岭国家植物园游玩的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
24、(1)111,51;(2)11.
【解析】
(1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;
(2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.
【详解】
解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:
解得:x=51,
经检验x=51是原方程的解,
则甲工程队每天能完成绿化的面积是51×2=111(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;
(2)设应安排甲队工作y天,根据题意得:
1.4y+×1.25≤8,
解得:y≥11,
答:至少应安排甲队工作11天.
2023年广东省江门市恩平市中考数学三模试卷(含解析): 这是一份2023年广东省江门市恩平市中考数学三模试卷(含解析),共17页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年广东省江门市恩平市中考数学一模试卷: 这是一份2022年广东省江门市恩平市中考数学一模试卷,共23页。试卷主要包含了,对称轴为直线x=1,下列结论等内容,欢迎下载使用。
广东省江门市恩平市达标名校2021-2022学年中考数学押题卷含解析: 这是一份广东省江门市恩平市达标名校2021-2022学年中考数学押题卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式计算正确的是,下列命题中真命题是等内容,欢迎下载使用。