|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年山东省德州武城县联考中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2021-2022学年山东省德州武城县联考中考适应性考试数学试题含解析01
    2021-2022学年山东省德州武城县联考中考适应性考试数学试题含解析02
    2021-2022学年山东省德州武城县联考中考适应性考试数学试题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省德州武城县联考中考适应性考试数学试题含解析

    展开
    这是一份2021-2022学年山东省德州武城县联考中考适应性考试数学试题含解析,共24页。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(  )
    A.10cm B.30cm C.45cm D.300cm
    2.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为(  )

    A. B. C. D.
    3.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为(   )

    A.65° B.130° C.50° D.100°
    4.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )

    A.正方体 B.球 C.圆锥 D.圆柱体
    5.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是(  )

    A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
    6.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是(  )
    每周做家务的时间(小时)
    0
    1
    2
    3
    4
    人数(人)
    2
    2
    3
    1
    1
    A.3,2.5 B.1,2 C.3,3 D.2,2
    7.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是  
    A. B. C. D.
    8.2017年,小榄镇GDP总量约31600000000元,数据31600000000科学记数法表示为(  )
    A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×1011
    9.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )
    A. B. C. D.
    10.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=(  )

    A.6 B. C.12﹣π D.12﹣π
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.

    12.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所能取到的整数值为________.
    13.不等式组的最大整数解为_____.
    14.分解因式x2﹣x=_______________________
    15.如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD﹣PC的最大值为_____.

    16.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .

    17.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边△EFG,设E点移动距离为x(0<x<6).
    (1)∠DCB=   度,当点G在四边形ABCD的边上时,x=   ;
    (2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;
    (3)当2<x<6时,求△EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值.

    19.(5分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.
    根据以上情况,请你回答下列问题:假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.
    20.(8分)计算:()-1+()0+-2cos30°.
    21.(10分)下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
    x
    ﹣1
    0
    1
    ax2


    1
    ax2+bx+c
    7
    2

    (1)求抛物线y=ax2+bx+c的表达式
    (2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
    (3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.

    22.(10分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
    分组
    频数
    4.0≤x<4.2
    2
    4.2≤x<4.4
    3
    4.4≤x<4.6
    5
    4.6≤x<4.8
    8
    4.8≤x<5.0
    17
    5.0≤x<5.2
    5
    (1)求活动所抽取的学生人数;
    (2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
    (3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.

    23.(12分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).

    (1)求抛物线的表达式.
    (2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
    ①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
    ②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
    (3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
    24.(14分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    根据已知得出直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
    【详解】
    直径是的圆形铁皮,被分成三个圆心角为半径是30cm的扇形
    假设每个圆锥容器的地面半径为

    解得
    故答案选A.
    【点睛】
    本题考查扇形弧长的计算方法和扇形围成的圆锥底面圆的半径的计算方法。
    2、C
    【解析】
    连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.
    【详解】
    解:连接OD,
    在Rt△OCD中,OC=OD=2,
    ∴∠ODC=30°,CD=
    ∴∠COD=60°,
    ∴阴影部分的面积= ,
    故选:C.

    【点睛】
    本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
    3、C
    【解析】
    试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.
    考点:切线的性质.
    4、D
    【解析】
    本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.
    【详解】
    根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.
    故选D.
    【点睛】
    此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.
    5、A
    【解析】
    根据三角形中位线定理判断即可.
    【详解】
    ∵AD为△ABC的中线,点E为AC边的中点,
    ∴DC=BC,DE=AB,
    ∵BC不一定等于AB,
    ∴DC不一定等于DE,A不一定成立;
    ∴AB=2DE,B一定成立;
    S△CDE=S△ABC,C一定成立;
    DE∥AB,D一定成立;
    故选A.
    【点睛】
    本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
    6、D
    【解析】
    试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.
    所以本题这组数据的中位数是1,众数是1.
    故选D.
    考点:1.众数;1.中位数.
    7、B
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.
    【详解】
    解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;
    B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;
    C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;
    D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.
    故选:B.
    【点睛】
    本题重点考查三视图的定义以及考查学生的空间想象能力.
    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    31600000000=3.16×1.故选:C.
    【点睛】
    本题考查科学记数法,解题的关键是掌握科学记数法的表示.
    9、A
    【解析】
    试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.
    考点:概率.
    10、D
    【解析】
    根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
    【详解】
    解:∵BC=4,E为BC的中点,
    ∴CE=2,
    ∴S1﹣S2=3×4﹣ ,
    故选D.
    【点睛】
    此题考查扇形面积的计算,矩形的性质及面积的计算.

    二、填空题(共7小题,每小题3分,满分21分)
    11、10, 1, 1
    【解析】
    作CD⊥x轴于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由线段垂直平分线的性质得出BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,由三角形面积公式即可得出△OMN的面积.
    【详解】
    解:作CD⊥x轴于D,CE⊥OB于E,如图所示:
    由题意得:OA=1,OB=8,
    ∵∠AOB=90°,
    ∴AB==10;
    ∵点C的坐标(﹣2,4),
    ∴OC==1,OE=4,
    ∴BE=OB﹣OE=4,
    ∴OE=BE,
    ∴BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,
    ∴△OMN的面积S=×3×4=1;
    故答案为:10,1,1.

    【点睛】
    本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.
    12、-2
    【解析】
    试题分析:根据题意可得2k+3>2,k<2,解得﹣<k<2.因k为整数,所以k=﹣2.
    考点:一次函数图象与系数的关系.
    13、﹣1.
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解.
    【详解】
    ,
    解不等式①得:
    x≤1,
    解不等式②得
    x-1>1x,
    x-1x>1,
    -x>1,
    x<-1,
    ∴ 不等式组的解集为x<-1,
    ∴ 不等式组的最大整数解为-1.
    故答案为-1.
    【点睛】
    本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.
    14、x(x-1)
    【解析】
    x2﹣x
    = x(x-1).
    故答案是:x(x-1).
    15、1
    【解析】
    分析: 由PD−PC=PD−PG≤DG,当点P在DG的延长线上时,PD−PC的值最大,最大值为DG=1.
    详解: 在BC上取一点G,使得BG=1,如图,

    ∵,,
    ∴,
    ∵∠PBG=∠PBC,
    ∴△PBG∽△CBP,
    ∴,
    ∴PG=PC,
    当点P在DG的延长线上时,PD−PC的值最大,最大值为DG==1.
    故答案为1
    点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.
    16、①②④.
    【解析】
    ①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为.
    ②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.
    ③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.
    ④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.
    故一定正确的是①②④
    17、1 1
    【解析】
    根据长方形的对边相等,每一个角都是直角可得AB=CD,AD=BC,∠BAD=∠C=90°,然后利用“边角边”证明Rt△ABD和Rt△CDB全等;根据等底等高的三角形面积相等解答.
    【详解】
    有,Rt△ABD≌Rt△CDB,
    理由:在长方形ABCD中,AB=CD,AD=BC,∠BAD=∠C=90°,
    在Rt△ABD和Rt△CDB中,

    ∴Rt△ABD≌Rt△CDB(SAS);
    有,△BFD与△BFA,△ABD与△AFD,△ABE与△DFE,△AFD与△BCD面积相等,但不全等.
    故答案为:1;1.
    【点睛】
    本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.

    三、解答题(共7小题,满分69分)
    18、 (1) 30;2;(2)x=1;(3)当x=时,y最大=;
    【解析】
    (1)如图1中,作DH⊥BC于H,则四边形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,当等边三角形△EGF的高= 时,点G在AD上,此时x=2;
    (2)根据勾股定理求出的长度,根据三角函数,求出∠ADB=30°,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;
    (3)图2,图3三种情形解决问题.①当2 【详解】
    (1)作DH⊥BC于H,则四边形ABHD是矩形.

    ∵AD=BH=3,BC=6,
    ∴CH=BC﹣BH=3,
    在Rt△DHC中,CH=3,

    当等边三角形△EGF的高等于时,点G在AD上,此时x=2,∠DCB=30°,
    故答案为30,2,
    (2)如图
    ∵AD∥BC
    ∴∠A=180°﹣∠ABC=180°﹣90°=90°
    在Rt△ABD中,

    ∴∠ADB=30°
    ∵G是BD的中点

    ∵AD∥BC
    ∴∠ADB=∠DBC=30°
    ∵△GEF是等边三角形,
    ∴∠GFE=60°
    ∴∠BGF=90°
    在Rt△BGF中,
    ∴2x=2即x=1;
    (3)分两种情况:
    当2<x<3,如图2

    点E、点F在线段BC上△GEF与四边形ABCD重叠部分为四边形EFNM
    ∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°
    ∴∠FNC=∠DCB
    ∴FN=FC=6﹣2x
    ∴GN=x﹣(6﹣2x)=3x﹣6
    ∵∠FNC=∠GNM=30°,∠G=60°
    ∴∠GMN=90°
    在Rt△GNM中,


    ∴当时,最大
    当3≤x<6时,如图3,

    点E在线段BC上,点F在线段BC的延长线上,△GEF与四边形ABCD重叠部分为△ECP
    ∵∠PCE=30°,∠PEC=60°
    ∴∠EPC=90°
    在Rt△EPC中EC=6﹣x,


    对称轴为
    当x<6时,y随x的增大而减小
    ∴当x=3时,最大
    综上所述:当时,最大
    【点睛】
    属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.
    19、(1);(2)
    【解析】
    (1)由题意知,共有4种等可能的结果,而取到红枣粽子的结果有2种则P(恰好取到红枣粽子)=.
    (2)由题意可得,出现的所有可能性是:
    (A,A)、(A,B)、(A,C)、(A,C)、
    (A,A)、(A,B)、(A,C)、(A,C)、
    (B,A)、(B,B)、(B,C)、(B,C)、
    (C,A)、(C,B)、(C,C)、(C,C),
    ∴由上表可知,取到的两个粽子共有16种等可能的结果,而一个是红枣粽子,一个是豆沙粽子的结果有3种,则P(取到一个红枣粽子,一个豆沙粽子)=.
    考点:列表法与树状图法;概率公式.
    20、4+2.
    【解析】
    原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.
    【详解】
    原式=3+1+3-2×
    =4+2.
    21、 (1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(1)∠BAD和∠DCO互补,理由详见解析.
    【解析】
    (1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
    (2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
    (1)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=120°可得出∠DAB+∠DCO=120°,即∠BAD和∠DCO互补.
    【详解】
    (1)当x=1时,y=ax2=1,
    解得:a=1;
    将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
    ,解得:,
    ∴抛物线的表达式为y=x2﹣4x+2;
    (2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:1,
    ∴点A到抛物线的距离与点B到抛物线的距离比为2:1.
    ∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
    ∴点B到抛物线的距离为1,
    ∴点B的横坐标为1+2=5,
    ∴点B的坐标为(5,7).
    (1)∠BAD和∠DCO互补,理由如下:
    当x=0时,y=x2﹣4x+2=2,
    ∴点A的坐标为(0,2),
    ∵y=x2﹣4x+2=(x﹣2)2﹣2,
    ∴点D的坐标为(2,﹣2).
    过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
    设直线BD的表达式为y=mx+n(m≠0),
    将B(5,7)、D(2,﹣2)代入y=mx+n,
    ,解得:,
    ∴直线BD的表达式为y=1x﹣2.
    当y=2时,有1x﹣2=2,
    解得:x=,
    ∴点N的坐标为(,2).
    ∵A(0,2),B(5,7),D(2,﹣2),
    ∴AB=5,BD=1,BN=,
    ∴==.
    又∵∠ABD=∠NBA,
    ∴△ABD∽△NBA,
    ∴∠ANB=∠DAB.
    ∵∠ANB+∠AND=120°,
    ∴∠DAB+∠DCO=120°,
    ∴∠BAD和∠DCO互补.

    【点睛】
    本题是二次函数综合题,考查了待定系数法求二次函数和一次函数解析式、等底三角形面积的关系、二次函数的图像与性质、相似三角形的判定与性质.熟练掌握待定系数法是解(1)的关键;熟练掌握等底三角形面积的关系式解(2)的关键;证明△ABD∽△NBA是解(1)的关键.
    22、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好
    【解析】
    【分析】(1)求出频数之和即可;
    (2)根据合格率=合格人数÷总人数×100%即可得解;
    (3)从两个不同的角度分析即可,答案不唯一.
    【详解】(1)∵频数之和=3+6+7+9+10+5=40,
    ∴所抽取的学生人数为40人;
    (2)活动前该校学生的视力达标率=×100%=37.5%;
    (3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;
    ②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.
    【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.
    23、(1)抛物线的解析式为:;
    (2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②存在.R点的坐标是(3,﹣);
    (3)M的坐标为(1,﹣).
    【解析】
    试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
    (2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
    (3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
    试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
    ∵正方形的边长2,
    ∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
    把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
    解得a=,b=﹣,c=﹣2,
    ∴抛物线的解析式为:,
    答:抛物线的解析式为:;
    (2)①由图象知:PB=2﹣2t,BQ=t,
    ∴S=PQ2=PB2+BQ2,
    =(2﹣2t)2+t2,
    即S=5t2﹣8t+4(0≤t≤1).
    答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
    ∵S=5t2﹣8t+4(0≤t≤1),
    ∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
    解得t=,t=(不合题意,舍去),
    此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
    若R点存在,分情况讨论:
    (i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
    则R的横坐标为3,R的纵坐标为﹣,
    即R(3,﹣),
    代入,左右两边相等,
    ∴这时存在R(3,﹣)满足题意;

    (ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
    则R(1,﹣)代入,,
    左右不相等,∴R不在抛物线上.(1分)
    综上所述,存点一点R(3,﹣)满足题意.
    答:存在,R点的坐标是(3,﹣);
    (3)如图,M′B=M′A,

    ∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
    理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
    ∴|MB|﹣|MD|<|DB|,
    即M到D、A的距离之差为|DB|时,差值最大,
    设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
    解得:k=,b=﹣,
    ∴y=x﹣,
    抛物线的对称轴是x=1,
    把x=1代入得:y=﹣
    ∴M的坐标为(1,﹣);
    答:M的坐标为(1,﹣).
    考点:二次函数综合题.
    24、(1);(1).
    【解析】
    (1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:,求出即可.
    【详解】
    解:(1)∵在矩形ABCD中,AB=1DA,DA=1,
    ∴AB=AE=4,
    ∴DE= ,
    ∴EC=CD-DE=4-1;
    (1)∵sin∠DEA= ,
    ∴∠DEA=30°,
    ∴∠EAB=30°,
    ∴图中阴影部分的面积为:
    S扇形FAB-S△DAE-S扇形EAB=

    【点睛】
    此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.

    相关试卷

    山东省武城县2021-2022学年中考数学适应性模拟试题含解析: 这是一份山东省武城县2021-2022学年中考数学适应性模拟试题含解析,共22页。

    山东省德州市乐陵市2021-2022学年中考适应性考试数学试题含解析: 这是一份山东省德州市乐陵市2021-2022学年中考适应性考试数学试题含解析,共23页。试卷主要包含了下列计算,正确的是等内容,欢迎下载使用。

    山东省德州临邑县联考2021-2022学年中考联考数学试题含解析: 这是一份山东省德州临邑县联考2021-2022学年中考联考数学试题含解析,共16页。试卷主要包含了下列算式的运算结果正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map