|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年浙江省绍兴市迪荡新区中考数学模拟预测题含解析
    立即下载
    加入资料篮
    2021-2022学年浙江省绍兴市迪荡新区中考数学模拟预测题含解析01
    2021-2022学年浙江省绍兴市迪荡新区中考数学模拟预测题含解析02
    2021-2022学年浙江省绍兴市迪荡新区中考数学模拟预测题含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年浙江省绍兴市迪荡新区中考数学模拟预测题含解析

    展开
    这是一份2021-2022学年浙江省绍兴市迪荡新区中考数学模拟预测题含解析,共19页。试卷主要包含了对于函数y=,下列说法正确的是等内容,欢迎下载使用。

    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
    A.85和82.5B.85.5和85C.85和85D.85.5和80
    2.计算的结果是( )
    A.B.C.1D.2
    3.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为( )
    A.6B.8C.14D.16
    4.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是( )
    A.有两个不相等实数根B.有两个相等实数根
    C.有且只有一个实数根D.没有实数根
    5.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为( )
    A.﹣=10B.﹣=10
    C.﹣=10D. +=10
    6.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是( )
    A.标号是2B.标号小于6C.标号为6D.标号为偶数
    7.对于函数y=,下列说法正确的是( )
    A.y是x的反比例函数B.它的图象过原点
    C.它的图象不经过第三象限D.y随x的增大而减小
    8.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是
    A.B.C.D.
    9.函数y=ax2与y=﹣ax+b的图象可能是( )
    A.B.
    C.D.
    10.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的( )
    A.外心B.内心C.三条中线的交点D.三条高的交点
    11.化简:(a+)(1﹣)的结果等于( )
    A.a﹣2B.a+2C.D.
    12.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 ( )
    A.2B.2C.3D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.
    14.如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)
    15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.
    16.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.
    17.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .
    18.一元二次方程x2﹣4=0的解是._________
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
    20.(6分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y与自变量x之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.
    21.(6分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?
    22.(8分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.
    23.(8分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cs53°≈,tan53°≈)
    24.(10分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴、轴交于两点,过作垂直于轴于点.已知.
    (1)求一次函数和反比例函数的表达式;
    (2)观察图象:当时,比较.

    25.(10分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
    求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
    26.(12分)(1)计算:(﹣2)2﹣+(+1)2﹣4cs60°;
    (2)化简:÷(1﹣)
    27.(12分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据众数及平均数的定义,即可得出答案.
    【详解】
    解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
    故选:B.
    【点睛】
    本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.
    2、A
    【解析】
    根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
    【详解】
    .
    故选A.
    【点睛】
    本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
    3、C
    【解析】
    根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.
    【详解】
    ∵一元二次方程x2-2x-5=0的两根是x1、x2,
    ∴x1+x2=2,x1•x2=-5,
    ∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.
    故选C.
    【点睛】
    考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1•x2= .
    4、A
    【解析】
    【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
    【详解】∵a=1,b=1,c=﹣3,
    ∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
    ∴方程x2+x﹣3=0有两个不相等的实数根,
    故选A.
    【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
    5、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    6、C
    【解析】
    利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.
    【详解】
    选项A、标号是2是随机事件;
    选项B、该卡标号小于6是必然事件;
    选项C、标号为6是不可能事件;
    选项D、该卡标号是偶数是随机事件;
    故选C.
    【点睛】
    本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.
    7、C
    【解析】
    直接利用反比例函数的性质结合图象分布得出答案.
    【详解】
    对于函数y=,y是x2的反比例函数,故选项A错误;
    它的图象不经过原点,故选项B错误;
    它的图象分布在第一、二象限,不经过第三象限,故选项C正确;
    第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,
    故选C.
    【点睛】
    此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.
    8、D
    【解析】
    由圆锥的俯视图可快速得出答案.
    【详解】
    找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
    【点睛】
    本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
    9、B
    【解析】
    选项中,由图可知:在,;在,,∴,所以A错误;
    选项中,由图可知:在,;在,,∴,所以B正确;
    选项中,由图可知:在,;在,,∴,所以C错误;
    选项中,由图可知:在,;在,,∴,所以D错误.
    故选B.
    点睛:在函数与中,相同的系数是“”,因此只需根据“抛物线”的开口方向和“直线”的变化趋势确定出两个解析式中“”的符号,看两者的符号是否一致即可判断它们在同一坐标系中的图象情况,而这与“b”的取值无关.
    10、B
    【解析】
    利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.
    【详解】
    解:如图,过点作于,于,于.
    图1

    (夹在平行线间的距离相等).
    如图:过点作于,作于E,作于.
    由题意可知: ,,,
    ∴ ,
    ∴图中的点是三角形三个内角的平分线的交点,
    点是的内心,
    故选B.
    【点睛】
    本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.
    11、B
    【解析】
    解:原式====.
    故选B.
    考点:分式的混合运算.
    12、A
    【解析】
    连接BD,交AC于O,
    ∵正方形ABCD,
    ∴OD=OB,AC⊥BD,
    ∴D和B关于AC对称,
    则BE交于AC的点是P点,此时PD+PE最小,
    ∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
    ∴此时PD+PE最小,
    此时PD+PE=BE,
    ∵正方形的面积是12,等边三角形ABE,
    ∴BE=AB=,
    即最小值是2,
    故选A.
    【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.
    【详解】
    由题意可得,
    DE=DB=CD=AB,
    ∴∠DEC=∠DCE=∠DCB,
    ∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,
    ∴∠DEC=∠ACE,
    ∴∠DCE=∠ACE=∠DCB=30°,
    ∴∠ACD=60°,∠CAD=60°,
    ∴△ACD是等边三角形,
    ∴AC=CD,
    ∴AC=DE,
    ∵AC∥DE,AC=CD,
    ∴四边形ACDE是菱形,
    ∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,
    ∴AC=2,
    ∴AE=2.
    故答案为2.
    【点睛】
    本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    14、8π.
    【解析】
    试题分析: 因为AB为切线,P为切点,
    劣弧AB所对圆心角
    考点: 勾股定理;垂径定理;弧长公式.
    15、
    【解析】
    解:根据题意可得:列表如下
    共有20种所有等可能的结果,其中两个颜色相同的有8种情况,
    故摸出两个颜色相同的小球的概率为.
    【点睛】
    本题考查列表法和树状图法,掌握步骤正确列表是解题关键.
    16、1
    【解析】
    根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
    【详解】
    由图可得,P0P1=1,P0P2=1,P0P3=1;
    P0P4=2,P0P5=2,P0P6=2;
    P0P7=3,P0P8=3,P0P9=3;
    ∵2018=3×672+2,
    ∴点P2018在正南方向上,
    ∴P0P2018=672+1=1,
    故答案为1.
    【点睛】
    本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    17、1
    【解析】
    ∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,
    ∴由中点公式得:c=,
    ∴a+b=2c,
    ∴a+b-2c=1.
    故答案为1.
    18、x=±1
    【解析】
    移项得x1=4,
    ∴x=±1.
    故答案是:x=±1.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、1米.
    【解析】
    试题分析:作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtan∠CAH=tan55°•x知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.
    试题解析:解:如图,作BE⊥DH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=1.
    答:塔杆CH的高为1米.
    点睛:本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形.
    20、 (1)① 30;(2)y1=0.1x+30,y2=0.2x;(3)当通话时间少于300分钟时,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间为300分钟时,选择通话方式①,②花费一样.
    【解析】
    试题分析:(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;
    (2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;
    (3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.
    解:(1)①;30;
    (2)设y1=k1x+30,y2=k2x,由题意得:将(500,80),(500,100)分别代入即可:
    500k1+30=80,
    ∴k1=0.1,
    500k2=100,
    ∴k2=0.2
    故所求的解析式为y1=0.1x+30; y2=0.2x;
    (3)当通讯时间相同时y1=y2,得0.2x=0.1x+30,解得x=300;
    当x=300时,y=1.
    故由图可知当通话时间在300分钟内,选择通话方式②实惠;
    当通话时间超过300分钟时,选择通话方式①实惠;
    当通话时间在300分钟时,选择通话方式①、②一样实惠.
    21、 (1)35元;(2)30元.
    【解析】
    (1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;
    (2)令w=2000,然后解一元二次方程,从而求出销售单价.
    【详解】
    解:(1)由题意,得:
    W=(x-20)×y
    =(x-20)(-10x+1)
    =-10x2+700x-10000
    =-10(x-35)2+2250
    当x=35时,W取得最大值,最大值为2250,
    答:当销售单价定为35元时,每月可获得最大利润为2250元;
    (2)由题意,得:,
    解得:,,
    销售单价不得高于32元,
    销售单价应定为30元.
    答:李明想要每月获得2000元的利润,销售单价应定为30元.
    【点睛】
    本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.
    22、证明见解析.
    【解析】
    由题意易用角角边证明△BDE≌△CDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长.
    【详解】
    证明:∵CF⊥AD于,BE⊥AD,
    ∴BE∥CF,∠EBD=∠FCD,
    又∵AD是△ABC的中线,
    ∴BD=CD,
    ∴在△BED与△CFD中,

    ∴△△BED≌△CFD(AAS)
    ∴ED=FD,
    又∵AD=AF+DF①,
    AD=AE-DE②,
    由①+②得:AF+AE=2AD.
    【点睛】
    该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.
    23、(20-5)千米.
    【解析】
    分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
    详解:过点B作BD⊥ AC,
    依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
    ∵BD⊥AC,
    ∴∠ABD=30°,∠CBD=53°,
    在Rt△ABD中,设AD=x,
    ∴tan∠ABD=
    即tan30°=,
    ∴BD=x,
    在Rt△DCB中,
    ∴tan∠CBD=
    即tan53°=,
    ∴CD=
    ∵CD+AD=AC,
    ∴x+=13,解得,x=
    ∴BD=12-,
    在Rt△BDC中,
    ∴cs∠CBD=tan60°=,
    即:BC=(千米),
    故B、C两地的距离为(20-5)千米.
    点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
    24、(1);(2)
    【解析】
    (1)由一次函数的解析式可得出D点坐标,从而得出OD长度,再由△ODC与△BAC相似及AB与BC的长度得出C、B、A的坐标,进而算出一次函数与反比例函数的解析式;
    (2)以A点为分界点,直接观察函数图象的高低即可知道答案.
    【详解】
    解:(1)对于一次函数y=kx-2,令x=0,则y=-2,即D(0,-2),
    ∴OD=2,
    ∵AB⊥x轴于B,
    ∴ ,
    ∵AB=1,BC=2,
    ∴OC=4,OB=6,
    ∴C(4,0),A(6,1)
    将C点坐标代入y=kx-2得4k-2=0,
    ∴k=,
    ∴一次函数解析式为y=x-2;
    将A点坐标代入反比例函数解析式得m=6,
    ∴反比例函数解析式为y=;
    (2)由函数图象可知:
    当0<x<6时,y1<y2;
    当x=6时,y1=y2;
    当x>6时,y1>y2;
    【点睛】
    本题考查了反比例函数与一次函数的交点问题.熟悉函数图象上点的坐标特征和待定系数法解函数解析式的方法是解答本题的关键,同时注意对数形结合思想的认识和掌握.
    25、证明见解析
    【解析】
    证明:(1)∵DF∥BE,
    ∴∠DFE=∠BEF.
    又∵AF=CE,DF=BE,
    ∴△AFD≌△CEB(SAS).
    (2)由(1)知△AFD≌△CEB,
    ∴∠DAC=∠BCA,AD=BC,
    ∴AD∥BC.
    ∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
    (1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.
    (2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.
    26、(1)5(2)
    【解析】
    (1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
    【详解】
    解:(1)原式=4﹣2+2+2+1﹣4×
    =7﹣2
    =5;
    (2)原式=÷
    =•
    =.
    【点睛】
    本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
    27、△A′DE是等腰三角形;证明过程见解析.
    【解析】
    试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.
    试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.
    理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,
    ∴CD=DA=DB,
    ∴∠DAC=∠DCA,
    ∵A′C∥AC,
    ∴∠DA′E=∠A,∠DEA′=∠DCA,
    ∴∠DA′E=∠DEA′,
    ∴DA′=DE,
    ∴△A′DE是等腰三角形.
    ∵四边形DEFD′是菱形,
    ∴EF=DE=DA′,EF∥DD′,
    ∴∠CEF=∠DA′E,∠EFC=∠CD′A′,
    ∵CD∥C′D′,
    ∴∠A′DE=∠A′D′C=∠EFC,
    在△A′DE和△EFC′中,

    ∴△A′DE≌△EFC′.
    考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.
    人数
    3
    4
    2
    1
    分数
    80
    85
    90
    95
    红1
    红2
    黄1
    黄2
    黄3
    红1
    红1,红2
    红1,黄1
    红1,黄2
    红1,黄3
    红2
    红2,红1
    红2,黄1
    红2,黄2
    红2,黄3
    黄1
    黄1,红1
    黄1,红2
    黄1,黄2
    黄1,黄3
    黄2
    黄2,红1
    黄2,红2
    黄2,黄1
    黄2,黄3
    黄3
    黄3,红1
    黄3,红2
    黄3,黄1
    黄3,黄2
    相关试卷

    浙江省绍兴市迪荡新区2022-2023学年数学九年级第一学期期末考试模拟试题含解析: 这是一份浙江省绍兴市迪荡新区2022-2023学年数学九年级第一学期期末考试模拟试题含解析,共24页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    浙江省绍兴市迪荡新区2023-2024学年数学八上期末联考试题含答案: 这是一份浙江省绍兴市迪荡新区2023-2024学年数学八上期末联考试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,计算的结果为,下列实数中,是无理数的是等内容,欢迎下载使用。

    2022-2023学年浙江省绍兴市迪荡新区数学七下期末联考模拟试题含答案: 这是一份2022-2023学年浙江省绍兴市迪荡新区数学七下期末联考模拟试题含答案,共7页。试卷主要包含了下列各式成立的是,下列计算错误的是,使分式有意义的x的取值范围是,下列说法等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map