2021-2022学年四川省成都市青羊区石室联中学中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是( )
A.0个 B.1个或2个
C.0个、1个或2个 D.只有1个
2.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )
A. B. C. D.
3.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.
A.1 B.2 C.3 D.4
4.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( )
每周做家务的时间(小时)
0
1
2
3
4
人数(人)
2
2
3
1
1
A.3,2.5 B.1,2 C.3,3 D.2,2
5.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是
A. B. C. D.
6.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得( )
A.168(1﹣x)2=108 B.168(1﹣x2)=108
C.168(1﹣2x)=108 D.168(1+x)2=108
7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A.2π B.4π C.5π D.6π
8.下列运算正确的是( )
A.a2•a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b6
9.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为( )
A.5 B.﹣1 C.2 D.﹣5
10.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
11.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )
A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒
12.如果菱形的一边长是8,那么它的周长是( )
A.16 B.32 C.16 D.32
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.
14.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.
15.某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为_____元.
16.分解因式:3x3﹣27x=_____.
17.对于函数y= ,当函数y﹤-3时,自变量x的取值范围是____________ .
18.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.
20.(6分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图②所示,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处.
已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计): 请你设计一个测量这段古城墙高度的方案.
要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.
21.(6分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.商家一次购买这种产品多少件时,销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)
22.(8分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
23.(8分)先化简,再选择一个你喜欢的数(要合适哦!)代入求值:.
24.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
25.(10分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.
(1)求证:DF⊥AC;
(2)求tan∠E的值.
26.(12分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
(1)请求出y关于x的函数关系式;
(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?
(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?
A
B
成本(元/瓶)
50
35
利润(元/瓶)
20
15
27.(12分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
【详解】
∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
故选C.
【点睛】
考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
2、A
【解析】
试题分析:观察图形可知,该几何体的主视图是.故选A.
考点:简单组合体的三视图.
3、C
【解析】
分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.
详解:解:设2元的共有x张,5元的共有y张,
由题意,2x+5y=27
∴x=(27-5y)
∵x,y是非负整数,
∴或或,
∴付款的方式共有3种.
故选C.
点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.
4、D
【解析】
试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.
所以本题这组数据的中位数是1,众数是1.
故选D.
考点:1.众数;1.中位数.
5、D
【解析】
由圆锥的俯视图可快速得出答案.
【详解】
找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.
【点睛】
本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.
6、A
【解析】
设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.
【详解】
设每次降价的百分率为x,
根据题意得:168(1-x)2=1.
故选A.
【点睛】
此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.
7、B
【解析】
连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.
【详解】
连接OA、OC,
∵∠ADC=60°,
∴∠AOC=2∠ADC=120°,
则劣弧AC的长为: =4π.
故选B.
【点睛】
本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式 .
8、D
【解析】
根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:
A、a2•a4=a6,故此选项错误;
B、2a2+a2=3a2,故此选项错误;
C、a6÷a2=a4,故此选项错误;
D、(ab2)3=a3b6,故此选项正确..
故选D.
考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.
9、B
【解析】
根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.
【详解】
∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
∴-2+m=−,
解得,m=-1,
故选B.
10、C
【解析】
根据反比例函数的图像性质进行判断.
【详解】
解:∵,电压为定值,
∴I关于R的函数是反比例函数,且图象在第一象限,
故选C.
【点睛】
本题考查反比例函数的图像,掌握图像性质是解题关键.
11、B
【解析】
设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.
【详解】
设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.
故选B.
【点睛】
本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
12、B
【解析】
根据菱形的四边相等,可得周长
【详解】
菱形的四边相等
∴菱形的周长=4×8=32
故选B.
【点睛】
本题考查了菱形的性质,并灵活掌握及运用菱形的性质
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
利用特殊三角形的三边关系,求出AM,AE长,求比值.
【详解】
解:如图所示,设BC=x,
∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB=BC=x,
根据题意得:AD=BC=x,AE=DE=AB=x,
如图,作EM⊥AD于M,则AM=AD=x,
在Rt△AEM中,cos∠EAD=,
故答案为:.
【点睛】
特殊三角形: 30°-60°-90°特殊三角形,三边比例是1::2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.
14、
【解析】
首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
【详解】
如图,设与AD交于N,EF与AD交于M,
根据折叠的性质可得:,,,
四边形ABCD是矩形,
,,,
,
,
,
设,则,
在中,,
,
,
即,
,,,
≌,
,
,
,
,
,
由折叠的性质可得:,
,
,
,
,
故答案为.
【点睛】
本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.
15、17
【解析】
根据饼状图求出25元所占比重为20%,再根据加权平均数求法即可解题.
【详解】
解:1-30%-50%=20%,
∴.
【点睛】
本题考查了加权平均数的计算方法,属于简单题,计算25元所占权比是解题关键.
16、3x(x+3)(x﹣3).
【解析】
首先提取公因式3x,再进一步运用平方差公式进行因式分解.
【详解】
3x3﹣27x
=3x(x2﹣9)
=3x(x+3)(x﹣3).
【点睛】
本题考查用提公因式法和公式法进行因式分解的能力.
一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
17、-
根据反比例函数的性质:y随x的增大而减小去解答.
【详解】
解:函数y= 中,y随x的增大而减小,当函数y﹤-3时
又函数y= 中,
故答案为:-
此题重点考察学生对反比例函数性质的理解,熟练掌握反比例函数性质是解题的关键.
18、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)见解析;(2)见解析.
【解析】
试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
试题解析:
证明:(1)选取①②,
∵在△BEO和△DFO中,
∴△BEO≌△DFO(ASA);
(2)由(1)得:△BEO≌△DFO,
∴EO=FO,BO=DO,
∵AE=CF,
∴AO=CO,
∴四边形ABCD是平行四边形.
点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
20、(1)8m;(2)答案不唯一
【解析】
(1)根据入射角等于反射角可得 ∠APB=∠CPD ,由 AB⊥BD、CD⊥BD 可得到 ∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD的长.
(2)设计成视角问题求古城墙的高度.
【详解】
(1)解:由题意,得∠APB=∠CPD,∠ABP=∠CDP=90°,
∴Rt△ABP∽Rt△CDP,
∴ ,
∴CD==8.
答:该古城墙的高度为8m
(2)解:答案不唯一,如:如图,
在距这段古城墙底部am的E处,用高h(m)的测角仪DE测得这段古城墙顶端A的仰角为α.即可测量这段古城墙AB的高度,
过点D作DCAB于点C.在Rt△ACD中,∠ACD=90°,tanα=,
∴AC=α tanα,
∴AB=AC+BC=αtanα+h
【点睛】
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
21、(1)商家一次购买这种产品1件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤1时,y=﹣5x2+750x,当x>1时,y=300x;(3)公司应将最低销售单价调整为2875元.
【解析】
(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;
(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;
(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.
【详解】
(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.
由题意得:3200﹣5(x﹣10)=2800,解得:x=1.
答:商家一次购买这种产品1件时,销售单价恰好为2800元;
(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:
当0≤x≤10时,y=(3200﹣2500)x=700x,
当10<x≤1时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,
当x>1时,y=(2800﹣2500)•x=300x;
(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,
函数y=700x,y=300x均是y随x增大而增大,
而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.
由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,
最低价为3200﹣5•(75﹣10)=2875元,
答:公司应将最低销售单价调整为2875元.
【点睛】
本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
22、1
【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
故代数式a3b+2a2b2+ab3的值是1.
23、1
【解析】解:
取时,原式.
24、(1)证明见解析;(2)证明见解析;(3)4.
【解析】
试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;
(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;
(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH=,Rt△ACH中,AH=3,即可得到AE=AH+EH=4.
试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;
(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.
(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH=,Rt△ACH中,AH==3,∴AE=AH+EH=4.
点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.
25、(1)证明见解析;(2)tan∠CBG=.
【解析】
(1)连接OD,CD,根据圆周角定理得∠BDC=90°,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:OD∥AC,根据切线的性质可得结论;
(2)如图,连接BG,先证明EF∥BG,则∠CBG=∠E,求∠CBG的正切即可.
【详解】
解:(1)证明:连接OD,CD,
∵BC是⊙O的直径,
∴∠BDC=90°,
∴CD⊥AB,
∵AC=BC,
∴AD=BD,
∵OB=OC,
∴OD是△ABC的中位线
∴OD∥AC,
∵DF为⊙O的切线,
∴OD⊥DF,
∴DF⊥AC;
(2)解:如图,连接BG,
∵BC是⊙O的直径,
∴∠BGC=90°,
∵∠EFC=90°=∠BGC,
∴EF∥BG,
∴∠CBG=∠E,
Rt△BDC中,∵BD=3,BC=5,
∴CD=4,
∵S△ABC=,即6×4=5BG,
∴BG=,
由勾股定理得:CG=,
∴tan∠CBG=tan∠E=.
【点睛】
本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点.
26、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
【解析】
试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.
(3)列出y与x的关系式,求y的最大值时,x的值.
试题解析:
(1)y=20x+15(600-x) =5x+9000,
∴y关于x的函数关系式为y=5x+9000;
(2)根据题意,得50 x+35(600-x)≥26400,
解得x≥360,
∵y=5x+9000,5>0,
∴y随x的增大而增大,
∴当x=360时,y有最小值为10800,
∴每天至少获利10800元;
(3) ,
∵,∴当x=250时,y有最大值9625,
∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
27、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
2023-2024学年四川省成都市青羊区石室中学九年级(上)期末数学试卷(含解析): 这是一份2023-2024学年四川省成都市青羊区石室中学九年级(上)期末数学试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
四川省成都市青羊区石室联中学2022-2023学年数学七下期末经典模拟试题含答案: 这是一份四川省成都市青羊区石室联中学2022-2023学年数学七下期末经典模拟试题含答案,共6页。试卷主要包含了一元二次方程的解是,下列事件中,属于必然事件的是等内容,欢迎下载使用。
四川省成都市青羊区成都石室中学2021-2022学年中考联考数学试题含解析: 这是一份四川省成都市青羊区成都石室中学2021-2022学年中考联考数学试题含解析,共17页。试卷主要包含了下列各数中,无理数是,下面计算中,正确的是,如图的立体图形,从左面看可能是等内容,欢迎下载使用。