2021-2022学年四川省达州市通川区中考数学模拟预测试卷含解析
展开这是一份2021-2022学年四川省达州市通川区中考数学模拟预测试卷含解析,共16页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=( )
A.30° B.40° C.50° D.60°
2.-4的相反数是( )
A. B. C.4 D.-4
3.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程( )
A. B.
C. D.
4.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为( )
A.0.135×106 B.1.35×105 C.13.5×104 D.135×103
5.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )
A.30厘米、45厘米; B.40厘米、80厘米; C.80厘米、120厘米; D.90厘米、120厘米
6.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
A.圆锥 B.圆柱 C.球 D.正方体
7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
A.1,2,3 B.1,1, C.1,1, D.1,2,
8.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )
A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011
9.如图,甲圆柱型容器的底面积为30cm2,高为8cm,乙圆柱型容器底面积为xcm2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y(cm)与x(cm2)之间的大致图象是( )
A. B. C. D.
10.如图,△ABC中,DE∥BC,,AE=2cm,则AC的长是( )
A.2cm B.4cm C.6cm D.8cm
二、填空题(本大题共6个小题,每小题3分,共18分)
11.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .
12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________
13.计算:
(1)()2=_____;
(2) =_____.
14.函数y=的自变量x的取值范围是_____.
15.分解因式:3a2﹣12=___.
16.计算:a3÷(﹣a)2=_____.
三、解答题(共8题,共72分)
17.(8分)美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
18.(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:
(1)△BCE∽△ADE;
(2)AB•BC=BD•BE.
19.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.
20.(8分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.
m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?
21.(8分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
22.(10分)()如图①已知四边形中,,BC=b,,求:
①对角线长度的最大值;
②四边形的最大面积;(用含,的代数式表示)
()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)
23.(12分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.
(1)求证:AM2=MF.MH
(2)若BC2=BD.DM,求证:∠AMB=∠ADC.
24.(本题满分8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.
点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.
2、C
【解析】
根据相反数的定义即可求解.
【详解】
-4的相反数是4,故选C.
【点晴】
此题主要考查相反数,解题的关键是熟知相反数的定义.
3、A
【解析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x-2)=2x+1.
故选:A.
【点睛】
此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.
4、B
【解析】
根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
【详解】
解:135000用科学记数法表示为:1.35×1.
故选B.
【点睛】
科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;
当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;
当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;
所以A、B、D选项不符合题意,C选项符合题意,
故选C.
6、C
【解析】
【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.
【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;
B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;
C. 球的主视图只能是圆,故符合题意;
D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,
故选C.
【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.
7、D
【解析】
根据三角形三边关系可知,不能构成三角形,依此即可作出判定;
B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.
【详解】
∵1+2=3,不能构成三角形,故选项错误;
B、∵12+12=()2,是等腰直角三角形,故选项错误;
C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;
D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.
故选D.
8、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
解:将546亿用科学记数法表示为:5.46×1010 ,故本题选C.
【点睛】
本题考查的是科学计数法,熟练掌握它的定义是解题的关键.
9、C
【解析】
根据题意可以写出y关于x的函数关系式,然后令x=40求出相应的y值,即可解答本题.
【详解】
解:由题意可得,
y==,
当x=40时,y=6,
故选C.
【点睛】
本题考查了反比例函数的图象,根据题意列出函数解析式是解决此题的关键.
10、C
【解析】
由∥可得△ADE∽△ABC,再根据相似三角形的性质即可求得结果.
【详解】
∵∥
∴△ADE∽△ABC
∴
∵
∴AC=6cm
故选C.
考点:相似三角形的判定和性质
点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
分析:根据概率的求法,找准两点:
①全部情况的总数;
②符合条件的情况数目;二者的比值就是其发生的概率.
详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为=.
故答案为.
点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.
12、
【解析】
由图形可得:
13、
【解析】
(1)直接利用分式乘方运算法则计算得出答案;
(2)直接利用分式除法运算法则计算得出答案.
【详解】
(1)()2=;
故答案为;
(2) ==.
故答案为.
【点睛】
此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
14、x≥﹣且x≠1
【解析】
分析:根据被开方数大于等于0,分母不等于0列式求解即可.
详解:根据题意得2x+1≥0,x-1≠0,
解得x≥-且x≠1.
故答案为x≥-且x≠1.
点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
15、3(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
16、a
【解析】
利用整式的除法运算即可得出答案.
【详解】
原式,
.
【点睛】
本题考查的知识点是整式的除法,解题关键是先将变成,再进行运算.
三、解答题(共8题,共72分)
17、观景亭D到南滨河路AC的距离约为248米.
【解析】
过点D作DE⊥AC,垂足为E,设BE=x,根据AE=DE,列出方程即可解决问题.
【详解】
过点D作DE⊥AC,垂足为E,设BE=x,
在Rt△DEB中,tan∠DBE=,
∵∠DBC=65°,
∴DE=xtan65°.
又∵∠DAC=45°,
∴AE=DE.
∴132+x=xtan65°,
∴解得x≈115.8,
∴DE≈248(米).
∴观景亭D到南滨河路AC的距离约为248米.
18、(1)见解析;(2)见解析.
【解析】
(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.
(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.
【详解】
证明:(1)∵AD=DC,
∴∠DAC=∠DCA,
∵DC2=DE•DB,
∴=,∵∠CDE=∠BDC,
∴△CDE∽△BDC,
∴∠DCE=∠DBC,
∴∠DAE=∠EBC,
∵∠AED=∠BEC,
∴△BCE∽△ADE,
(2)∵DC2=DE•DB,AD=DC
∴AD2=DE•DB,
同法可得△ADE∽△BDA,
∴∠DAE=∠ABD=∠EBC,
∵△BCE∽△ADE,
∴∠ADE=∠BCE,
∴△BCE∽△BDA,
∴=,
∴AB•BC=BD•BE.
【点睛】
本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.
19、-1
【解析】
先化简,再选出一个合适的整数代入即可,要注意a的取值范围.
【详解】
解:
,
当时,原式.
【点睛】
本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.
20、 (1)、26%;50;(2)、公交车;(3)、300名.
【解析】
试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.
试题解析:(1)、1﹣14%﹣20%﹣40%=26%; 20÷40%=50;
骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:
(2)、由图可知,采用乘公交车上学的人数最多
(3)、该校骑自行车上学的人数约为:1500×20%=300(名).
答:该校骑自行车上学的学生有300名.
考点:统计图
21、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
22、(1)①;②;(2)150+475+475.
【解析】
(1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;
(2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得
△ACD′的面积即可.
【详解】
(1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD=,
②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四边形ABCD的最大面积=(a2+b2)+ab=;
(2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因为BC=30,所以EC=EB+BC=40,AC==10,因为∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,则△ACD中,∠D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,
当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D’,交AC于F,FD’即为所求最大值,连接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.
【点睛】
本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.
23、(1)证明见解析;(2)证明见解析.
【解析】
(1)由于AD∥BC,AB∥CD,通过三角形相似,找到分别于,都相等的比,把比例式变形为等积式,问题得证.
(2)推出∽,再结合,可证得答案.
【详解】
(1)证明:∵四边形是平行四边形,
∴,,
∴, ,
∴即.
(2)∵四边形是平行四边形,
∴,又∵,
∴即,
又∵,
∴∽,
∴,
∵,
∴,
∵,
∴.
【点睛】
本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
24、(1)见解析;(2)6或
【解析】
试题分析:(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
试题解析:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=DC
在Rt△ABD中,AB=
∴四边形BDFC的面积为S=×3=6;
②若BD=DC
过D作BC的垂线,则垂足为BC得中点,不可能;
③若BC=DC
过D作DG⊥BC,垂足为G
在Rt△CDG中,DG=
∴四边形BDFC的面积为S=.
考点:三角形全等,平行四边形的判定,勾股定理,四边形的面积
相关试卷
这是一份2022-2023学年四川省达州市通川区七年级(下)期末数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省阆中学中学2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了如果,则a的取值范围是,对于点A,,下列运算正确的是,二次函数的对称轴是等内容,欢迎下载使用。
这是一份2022届四川省达州通川区五校联考中考数学模拟预测题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,已知二次函数,估计﹣2的值应该在等内容,欢迎下载使用。