|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年山西省临汾市名校中考数学考前最后一卷含解析
    立即下载
    加入资料篮
    2021-2022学年山西省临汾市名校中考数学考前最后一卷含解析01
    2021-2022学年山西省临汾市名校中考数学考前最后一卷含解析02
    2021-2022学年山西省临汾市名校中考数学考前最后一卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山西省临汾市名校中考数学考前最后一卷含解析

    展开
    这是一份2021-2022学年山西省临汾市名校中考数学考前最后一卷含解析,共20页。试卷主要包含了式子有意义的x的取值范围是,若=1,则符合条件的m有,一、单选题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:

    转盘总次数
    10
    20
    30
    50
    100
    150
    180
    240
    330
    450
    “和为7”出现频数
    2
    7
    10
    16
    30
    46
    59
    81
    110
    150
    “和为7”出现频率
    0.20
    0.35
    0.33
    0.32
    0.30
    0.30
    0.33
    0.34
    0.33
    0.33
    如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
    A.0.33 B.0.34 C.0.20 D.0.35
    2.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是(  )

    A. B. C. D.
    3.式子有意义的x的取值范围是( )
    A.且x≠1 B.x≠1 C. D.且x≠1
    4.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为(  )

    A.x>2 B.0<x<4
    C.﹣1<x<4 D.x<﹣1 或 x>4
    5.若=1,则符合条件的m有(  )
    A.1个 B.2个 C.3个 D.4个
    6.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是( )
    A.t< B.t> C.t≤ D.t≥
    7.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
    A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
    8.一、单选题
    如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=(  )

    A.75° B.80° C.85° D.90°
    9.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是(  )

    A.① B.② C.③ D.④
    10.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )

    A.1个 B.2个 C.3个 D.4
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为_____.

    12.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.

    13.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.

    14.点A(-2,1)在第_______象限.
    15.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.

    16.若关于x的方程的解是正数,则m的取值范围是____________________
    三、解答题(共8题,共72分)
    17.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.
    (1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;
    (2)如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

    18.(8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
    (1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
    类别
    频数(人数)
    频率
    武术类

    0.25
    书画类
    20
    0.20
    棋牌类
    15
    b
    器乐类


    合计
    a
    1.00
    (2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
    请你根据以上图表提供的信息解答下列问题:
    ①a=_____,b=_____;
    ②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
    ③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.

    19.(8分)已知:如图所示,在中,,,求和的度数.

    20.(8分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.
    21.(8分)(1)计算:﹣14+sin61°+()﹣2﹣(π﹣)1.
    (2)解不等式组,并把它的解集在数轴上表示出来.
    22.(10分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

    (1)接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   度;
    (2)请补全条形统计图;
    (3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
    23.(12分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
    (参考数据:sin15°=,cos15°=,tan15°=2﹣)
    (1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
    (2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
    (3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.

    24.我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
    (1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.
    (2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.
    (3)若从对校园安全知识达到“了解”程度的3个女生A、B、C和2个男生M、N中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A的概率.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
    【详解】
    由表中数据可知,出现“和为7”的概率为0.33.
    故选A.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    2、C
    【解析】
    分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
    详解:从左边看竖直叠放2个正方形.
    故选:C.
    点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
    3、A
    【解析】
    根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且.故选A.
    4、C
    【解析】
    看两函数交点坐标之间的图象所对应的自变量的取值即可.
    【详解】
    ∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
    ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
    故选C.
    【点睛】
    本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
    5、C
    【解析】
    根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.
    【详解】
    =1
    m2-9=0或m-2= 1
    即m= 3或m=3,m=1
    m有3个值
    故答案选C.
    【点睛】
    本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.
    6、B
    【解析】
    将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.
    【详解】
    由题意可得:﹣x+2=,
    所以x2﹣2x+1﹣6t=0,
    ∵两函数图象有两个交点,且两交点横坐标的积为负数,

    解不等式组,得t>.
    故选:B.
    点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.
    7、C
    【解析】
    试题分析:28000=1.1×1.故选C.
    考点:科学记数法—表示较大的数.
    8、A
    【解析】
    分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
    详解:∵AD是BC边上的高,∠ABC=60°,
    ∴∠BAD=30°,
    ∵∠BAC=50°,AE平分∠BAC,
    ∴∠BAE=25°,
    ∴∠DAE=30°﹣25°=5°,
    ∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,
    ∴∠EAD+∠ACD=5°+70°=75°,
    故选A.
    点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.
    9、A
    【解析】
    根据题意得到原几何体的主视图,结合主视图选择.
    【详解】
    解:原几何体的主视图是:

    视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
    故取走的正方体是①.
    故选A.
    【点睛】
    本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
    10、B
    【解析】
    由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①抛物线与y轴交于负半轴,则c<1,故①正确;
    ②对称轴x1,则2a+b=1.故②正确;
    ③由图可知:当x=1时,y=a+b+c<1.故③错误;
    ④由图可知:抛物线与x轴有两个不同的交点,则b2﹣4ac>1.故④错误.
    综上所述:正确的结论有2个.
    故选B.
    【点睛】
    本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    试题分析:连接OC,求出∠D和∠COD,求出边DC长,分别求出三角形OCD的面积和扇形COB的面积,即可求出答案.连接OC,∵AC=CD,∠ACD=120°,∴∠CAD=∠D=30°,∵DC切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∴∠COD=60°,在Rt△OCD中,∠OCD=90°,∠D=30°,OC=2,∴CD=2,∴阴影部分的面积是S△OCD﹣S扇形COB=×2×2﹣=2﹣π,故答案为2﹣π.

    考点:1.等腰三角形性质;2.三角形的内角和定理;3.切线的性质;4.扇形的面积.
    12、
    【解析】
    先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可.
    【详解】
    解:∵四边形是平行四边形,
    ∴对角线把平行四边形分成面积相等的四部分,
    观察发现:图中阴影部分面积=S四边形,
    ∴针头扎在阴影区域内的概率为;
    故答案为:.
    【点睛】
    此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.
    13、
    【解析】
    连接OA,作OM⊥AB于点M,
    ∵正六边形ABCDEF的外接圆半径为2cm
    ∴正六边形的半径为2 cm, 即OA=2cm
    在正六边形ABCDEF中,∠AOM=30°,
    ∴正六边形的边心距是OM= cos30°×OA=(cm)
    故答案为.

    14、二
    【解析】
    根据点在第二象限的坐标特点解答即可.
    【详解】
    ∵点A的横坐标-2<0,纵坐标1>0,
    ∴点A在第二象限内.
    故答案为:二.
    【点睛】
    本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    15、1
    【解析】
    作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.
    【详解】
    作AB的中点E,连接EM、CE,

    在直角△ABC中,AB===10,
    ∵E是直角△ABC斜边AB上的中点,
    ∴CE=AB=5,
    ∵M是BD的中点,E是AB的中点,
    ∴ME=AD=2,
    ∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,
    ∴最大值为1,
    故答案为1.
    【点睛】
    本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.
    16、m<4且m≠2
    【解析】
    解方程得x=4-m,由已知可得x>0且x-2≠0,则有4-m >0且4-m-2≠0,解得:m<4且m≠2.

    三、解答题(共8题,共72分)
    17、(1) (2)证明见解析
    【解析】
    (1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
    (2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.
    【详解】
    解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.
    在 Rt△ABE 中,∵OB=OE,
    ∴BE=2OA=2,
    ∵MB=ME,
    ∴∠MBE=∠MEB=15°,
    ∴∠AME=∠MBE+∠MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,
    ∵AB2+AE2=BE2,
    ∴,
    ∴x= (负根已经舍弃),
    ∴AB=AC=(2+ )• ,
    ∴BC= AB= +1.
    作 CQ⊥AC,交 AF 的延长线于 Q,

    ∵ AD=AE ,AB=AC ,∠BAE=∠CAD,
    ∴△ABE≌△ACD(SAS),
    ∴∠ABE=∠ACD,
    ∵∠BAC=90°,FG⊥CD,
    ∴∠AEB=∠CMF,
    ∴∠GEM=∠GME,
    ∴EG=MG,
    ∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,
    ∴△ABE≌△CAQ(ASA),
    ∴BE=AQ,∠AEB=∠Q,
    ∴∠CMF=∠Q,
    ∵∠MCF=∠QCF=45°,CF=CF,
    ∴△CMF≌△CQF(AAS),
    ∴FM=FQ,
    ∴BE=AQ=AF+FQ=AF=FM,
    ∵EG=MG,
    ∴BG=BE+EG=AF+FM+MG=AF+FG.
    【点睛】
    本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    18、(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.
    【解析】
    (1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;
    (2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.
    【详解】
    (1)∵调查的人数较多,范围较大,
    ∴应当采用随机抽样调查,
    ∵到六年级每个班随机调查一定数量的同学相对比较全面,
    ∴丙同学的说法最合理.
    (2)①∵喜欢书画类的有20人,频率为0.20,
    ∴a=20÷0.20=100,
    b=15÷100=0.15;
    ②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,
    ∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;
    ③喜欢武术类的人数为:560×0.25=140人.
    【点睛】
    本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    19、,.
    【解析】
    根据等腰三角形的性质即可求出∠B,再根据三角形外角定理即可求出∠C.
    【详解】
    在中,,
    ∵,在三角形中,

    又∵,在三角形中,
    ∴.
    【点睛】
    此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.
    20、骑共享单车从家到单位上班花费的时间是1分钟.
    【解析】
    试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.
    试题解析:设骑共享单车从家到单位上班花费x分钟,
    依题意得:
    解得x=1.
    经检验,x=1是原方程的解,且符合题意.
    答:骑共享单车从家到单位上班花费的时间是1分钟.
    21、(1)5;(2)﹣2≤x<﹣.
    【解析】
    (1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;
    (2)先求出两个不等式的解集,再找出解集的公共部分即可.
    【详解】
    (1)原式

    =5;
    (2)解不等式①得,x≥﹣2,
    解不等式②得,
    所以不等式组的解集是
    用数轴表示为:

    【点睛】
    本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.
    22、 (1) 60,90;(2)见解析;(3) 300人
    【解析】
    (1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
    (2)由(1)可求得了解的人数,继而补全条形统计图;
    (3)利用样本估计总体的方法,即可求得答案.
    【详解】
    解:(1)∵了解很少的有30人,占50%,
    ∴接受问卷调查的学生共有:30÷50%=60(人);
    ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
    故答案为60,90;
    (2)60﹣15﹣30﹣10=5;
    补全条形统计图得:

    (3)根据题意得:900×=300(人),
    则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
    23、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
    【解析】
    (1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
    (2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
    (3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
    【详解】
    解:(1)EF∥BD.
    证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
    ∴DE=BF,
    又∵DE∥BF,
    ∴四边形DBFE是平行四边形,
    ∴EF∥DB;
    (2)①AE=AM.
    ∵EF∥BD,
    ∴∠F=∠ABD=45°,
    ∴MB=BF=DE,
    ∵正方形ABCD,
    ∴∠ADC=∠ABC=90°,AB=AD,
    ∴△ADE≌△ABM,
    ∴AE=AM;
    ②△AEM能为等边三角形.
    若△AEM是等边三角形,则∠EAM=60°,
    ∵△ADE≌△ABM,
    ∴∠DAE=∠BAM=15°,
    ∵tan∠DAE=,AD=8,
    ∴2﹣=,
    ∴DE=16﹣8,
    即当DE=16﹣8时,△AEM是等边三角形;
    (3)△ANF的面积不变.
    设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,

    ∵CD∥AB,
    ∴△DEN∽△BNA,
    ∴=,
    ∴,
    ∴PN=,
    ∴S△ANF=AF×PN=×(x+8)×=32,
    即△ANF的面积不变.
    【点睛】
    本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
    24、(1)60,30;;(2)300;(3)
    【解析】
    (1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;
    (2)利用样本估计总体的方法,即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案.
    【详解】
    解:(1)∵了解很少的有30人,占50%,
    ∴接受问卷调查的学生共有:30÷50%=60(人);
    ∵了解部分的人数为60﹣(15+30+10)=5,
    ∴扇形统计图中“了解”部分所对应扇形的圆心角为:×360°=30°;
    故答案为60,30;
    (2)根据题意得:900×=300(人),
    则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,
    故答案为300;
    (3)画树状图如下:

    所有等可能的情况有6种,其中抽到女生A的情况有2种,
    所以P(抽到女生A)==.
    【点睛】
    此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.

    相关试卷

    新疆乌鲁木齐市名校2021-2022学年中考数学考前最后一卷含解析: 这是一份新疆乌鲁木齐市名校2021-2022学年中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为,下列调查中,最适合采用全面调查,关于x的方程=无解,则k的值为,若,,则的值是等内容,欢迎下载使用。

    2022届山西省重点名校中考数学考前最后一卷含解析: 这是一份2022届山西省重点名校中考数学考前最后一卷含解析,共24页。

    2021-2022学年山西省太原市名校中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年山西省太原市名校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了的相反数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map