2021-2022学年辽宁省大连协作校中考联考数学试题含解析
展开1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:
(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧
(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )
A.命题(1)与命题(2)都是真命题
B.命题(1)与命题(2)都是假命题
C.命题(1)是假命题,命题(2)是真命题
D.命题(1)是真命题,命题(2)是假命题
2.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34°B.56°C.66°D.54°
3.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )
A.50 B.0.02 C.0.1 D.1
4.如图,平行四边形ABCD的周长为12,∠A=60°,设边AB的长为x,四边形ABCD的面积为y,则下列图象中,能表示y与x函数关系的图象大致是( )
A.B.C.D.
5.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为( )
A.1:2B.1:3C.1:4D.1:1
6.下列实数中,最小的数是( )
A.B.C.0D.
7.下列图形是中心对称图形的是( )
A.B.C.D.
8.下列关于事件发生可能性的表述,正确的是( )
A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
D.掷两枚硬币,朝上的一面是一正面一反面的概率为
9.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是( )
A.(2017,0)B.(2017,)
C.(2018,)D.(2018,0)
10.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是( )
A.216000米B.0.00216米
C.0.000216米D.0.0000216米
11.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是( )
A.160元 B.180元 C.200元 D.220元
12.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:
则这10名学生的数学成绩的中位数是_____分.
14.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 .
15.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.
16.化简:=_____.
17.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.
18.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
(1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
20.(6分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
21.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
22.(8分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
(1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
(2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
(3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.
23.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.
24.(10分)阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).
阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当即时,函数的最小值为.
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.
问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时, 的最小值为__________.
问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
25.(10分)如图,在平面直角坐标系中,正方形的边长为,顶点、分别在轴、轴的正半轴,抛物线经过、两点,点为抛物线的顶点,连接、、.
求此抛物线的解析式.
求此抛物线顶点的坐标和四边形的面积.
26.(12分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.
(1)依题意补全图1,并求∠BEC的度数;
(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;
(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.
27.(12分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D连DE并延长交BC于F,
(1)判断△ABC的形状,并证明你的结论;
(2)如图1,若BE=CE=,求⊙A的面积;
(3)如图2,若tan∠CEF=,求cs∠C的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.
(1)∵P(a,b)在y=上, ∴a和b同号,所以对称轴在y轴左侧,
∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.
(2)∵函数y=的所有“派生函数”为y=ax2+bx, ∴x=0时,y=0,
∴所有“派生函数”为y=ax2+bx经过原点,
∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.
考点:(1)命题与定理;(2)新定义型
2、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
3、D
【解析】
所有小组频数之和等于数据总数,所有频率相加等于1.
4、C
【解析】
过点B作BE⊥AD于E,构建直角△ABE,通过解该直角三角形求得BE的长度,然后利用平行四边形的面积公式列出函数关系式,结合函数关系式找到对应的图像.
【详解】
如图,过点B作BE⊥AD于E.∵∠A=60°,设AB边的长为x,∴BE=AB∙sin60°=x.∵平行四边形ABCD的周长为12,∴AB=(12-2x)=6-x,∴y=AD∙BE=(6-x)×x=﹣(0≤x≤6).则该函数图像是一开口向下的抛物线的一部分,观察选项,C符合题意.故选C.
【点睛】
本题考查了二次函数的图像,根据题意求出正确的函数关系式是解题的关键.
5、B
【解析】
根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.
【详解】
解:∵D、E分别为△ABC的边AB、AC上的中点,
∴DE是△ABC的中位线,
∴DE∥BC,DE=BC,
∴△ADE∽△ABC,
∴△ADE的面积:△ABC的面积==1:4,
∴△ADE的面积:四边形BCED的面积=1:3;
故选B.
【点睛】
本题考查三角形中位线定理及相似三角形的判定与性质.
6、B
【解析】
根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.
【详解】
∵<-2<0<,
∴最小的数是-π,
故选B.
【点睛】
此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.
7、B
【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.
A、不是中心对称图形,故本选项错误;
B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;
D、不是中心对称图形,故本选项错误.
故选B.
考点:中心对称图形.
【详解】
请在此输入详解!
8、C
【解析】
根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
【详解】
解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
故选:C.
【点睛】
考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
9、C
【解析】
本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.
【详解】
.解:∵正六边形ABCDEF一共有6条边,即6次一循环;
∴2017÷6=336余1,
∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,
∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,
∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,
∴点F滚动2107次时的坐标为(2018,),
故选C.
【点睛】
本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.
10、B
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
2.16×10﹣3米=0.00216米.
故选B.
【点睛】
考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
11、C
【解析】
利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.
【详解】
解:设原价为x元,根据题意可得:
80%x=140+20,
解得:x=1.
所以该商品的原价为1元;
故选:C.
【点睛】
此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.
12、A。
【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,
∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。
此时,由AB=2,根据勾股定理,得弦AP=x=。
∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。
又∵当AP=x=1时,△APO为等边三角形,它的面积y=,
∴此时,点(1,)应在y=的一半上方,从而可排除C选项。
故选A。
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据中位数的概念求解即可.
【详解】
这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100,
则中位数为:=1.
故答案为:1.
【点睛】
本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
14、-6
【解析】
分析:∵菱形的两条对角线的长分别是6和4,
∴A(﹣3,2).
∵点A在反比例函数的图象上,
∴,解得k=-6.
【详解】
请在此输入详解!
15、
【解析】
先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.
【详解】
∵⊙O的直径BC=,
∴AB=BC=1,
设圆锥的底面圆的半径为r,
则2πr=,解得r=,
即圆锥的底面圆的半径为米故答案为.
16、
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,故答案为.
【点睛】
本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.
17、1:4
【解析】
∵两个相似三角形对应边上的高的比为1∶4,
∴这两个相似三角形的相似比是1:4
∵相似三角形的周长比等于相似比,
∴它们的周长比1:4,
故答案为:1:4.
【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.
18、40cm
【解析】
首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.
【详解】
∵圆锥的底面直径为60cm,
∴圆锥的底面周长为60πcm,
∴扇形的弧长为60πcm,
设扇形的半径为r,
则=60π,
解得:r=40cm,
故答案为:40cm.
【点睛】
本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)8m2;(2)68m2;(3) 40,8
【解析】
(1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
【详解】
(1) ∵为长方形和菱形的对称中心,,∴
∵,,∴
∴当时,,
(2)∵,
∴-,
∵,,
∴解不等式组得,
∵,结合图像,当时,随的增大而减小.
∴当时, 取得最大值为
(3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
【点睛】
本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
20、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.
21、 (1)1000;(2)54°;(3)见解析;(4)32万人
【解析】
根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
【详解】
解:
(1)400÷40%=1000(人)
(2)360°×=54°,
故答案为:1000人; 54° ;
(3)1-10%-9%-26%-40%=15%
15%×1000=150(人)
(4)80×=52.8(万人)
答:总人数为52.8万人.
【点睛】
本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
22、(1)详见解析;(2)2+2;(3)S△BDQx+.
【解析】
(1)根据要求利用全等三角形的判定和性质画出图形即可.
(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.
(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.
【详解】
解:(1)如图1,作一边上的中线可分割成2个全等三角形,
如图2,连接外心和各顶点的线段可分割成3个全等三角形,
如图3,连接各边的中点可分割成4个全等三角形,
(2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.
∵△ABC是等边三角形,O是外心,
∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
∴OE=OF,
∵∠OEB=∠OFB=90°,
∴∠EOF+∠EBF=180°,
∴∠EOF=∠NOM=120°,
∴∠EOM=∠FON,
∴△OEM≌△OFN(ASA),
∴EM=FN,ON=OM,S△EOM=S△NOF,
∴S四边形BMON=S四边形BEOF=定值,
∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
∴Rt△OBE≌Rt△OBF(HL),
∴BE=BF,
∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
∴欲求最小值,只要求出l的最小值,
∵l=BM+BN+ON+OM=定值+ON+OM,
欲求最小值,只要求出ON+OM的最小值,
∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,
此时定值最小,s=×2×=,l=2+2++=4+,
∴的最小值==2+2.
(3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.
∵△ABC是等边三角形,BD=DC,
∴AD平分∠BAC,
∵DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠DEA=∠DEQ=∠AFD=90°,
∴∠EAF+∠EDF=180°,
∵∠EAF=60°,
∴∠EDF=∠PDQ=120°,
∴∠PDF=∠QDE,
∴△PDF≌△QDE(ASA),
∴PF=EQ,
在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
∴CF=CD=1,DF=,
同法可得:BE=1,DE=DF=,
∵AF=AC﹣CF=4﹣1=3,PA=x,
∴PF=EQ=3+x,
∴BQ=EQ﹣BE=2+x,
∴S△BDQ=•BQ•DE=×(2+x)×=x+.
【点睛】
本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。
23、(1)证明见解析;(2)15.
【解析】
(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
【详解】
(1)证明:连结OD,∵∠ACB=90°,
∴∠A+∠B=90°,
又∵OD=OB,
∴∠B=∠BDO,
∵∠ADE=∠A,
∴∠ADE+∠BDO=90°,
∴∠ODE=90°.
∴DE是⊙O的切线;
(2)连结CD,∵∠ADE=∠A,
∴AE=DE.
∵BC是⊙O的直径,∠ACB=90°.
∴EC是⊙O的切线.
∴DE=EC.
∴AE=EC,
又∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC=
设BD=x,在Rt△BDC中,BC2=x2+122,
在Rt△ABC中,BC2=(x+16)2﹣202,
∴x2+122=(x+16)2﹣202,解得x=9,
∴BC=.
【点睛】
考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
24、问题1: 2 8 问题2: 3 8 问题3:设学校学生人数为x人,生均投入为y元,依题意得: ,因为x>0,所以,当即x=800时,y取最小值2.答:当学校学生人数为800人时,该校每天生均投入最低,最低费用是2元.
【解析】试题分析:
问题1:当 时,周长有最小值,求x的值和周长最小值;
问题2:变形,由当x+1= 时, 的最小值,求出x值和的最小值;
问题3:设学校学生人数为x人,生均投入为y元,根据生均投入=支出总费用÷学生人数,列出关系式,根据前两题解法,从而求解.
试题解析:
问题1:∵当 ( x>0)时,周长有最小值,
∴x=2,
∴当x=2时,有最小值为=3.即当x=2时,周长的最小值为2×3=8;
问题2:∵y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),
∴,
∵当x+1= (x>-1)时, 的最小值,
∴x=3,
∴x=3时, 有最小值为3+3=8,即当x=3时, 的最小值为8;
问题3:设学校学生人数为x人,则生均投入y元,依题意得
,因为x>0,所以,当即x=800时,y取最小值2.
答:当学校学生人数为800时,该校每天生均投入最低,最低费用是2元.
25、 ;.
【解析】
(1)由正方形的性质可求得B、C的坐标,代入抛物线解析式可求得b、c的值,则可求得抛物线的解析式;
(2)把抛物线解析式化为顶点式可求得D点坐标,再由S四边形ABDC=S△ABC+S△BCD可求得四边形ABDC的面积.
【详解】
由已知得:,,
把与坐标代入得:
,
解得:,,
则解析式为;
∵,
∴抛物线顶点坐标为,
则.
【点睛】
二次函数的综合应用.解题的关键是:在(1)中确定出B、C的坐标是解题的关键,在(2)中把四边形转化成两个三角形.
26、(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°.
【解析】
(1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;
(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;
(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC=60°,即可得出结论.
【详解】
(1)补全图形如图1所示,
根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.
∵△ABC是等边三角形,
∴AB=AC,∠BAC=60°.
∴AB=AD.
∴∠ABD=∠ADB=y.
在△ABD中,2x+2y+60°=180°,
∴x+y=60°.
∴∠DEM=∠CEM=x+y=60°.
∴∠BEC=60°;
(2)BE=2DE,
证明:∵△ABC是等边三角形,
∴AB=BC=AC,
由对称知,AD=AC,∠CAD=2∠CAM=60°,
∴△ACD是等边三角形,
∴CD=AD,
∴AB=BC=CD=AD,
∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,
∴∠ABC=60°,
∴∠ABD=∠DBC=30°,
由(1)知,∠BEC=60°,
∴∠ECB=90°.
∴BE=2CE.
∵CE=DE,
∴BE=2DE.
(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)
延长EB至F使BE=BF,
∴EF=2BE,
由轴对称得,DE=CE,
∵DE=2BE,
∴CE=2BE,
∴EF=CE,
连接CF,同(1)的方法得,∠BEC=60°,
∴△CEF是等边三角形,
∵BE=BF,
∴∠CBE=90°,
∴∠BCE=30°,
∴∠ACE=30°,
∵∠AED=∠AEC,∠BEC=60°,
∴∠AEC=60°,
∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.
【点睛】
此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.
27、 (1) △ABC为直角三角形,证明见解析;(2)12π;(3).
【解析】
(1)由,得△CEF∽△CBE,∴∠CBE=∠CEF,由BD为直径,得∠ADE+∠ABE=90°,即可得∠DBC=90°故△ABC为直角三角形.(2)设∠EBC=∠ECB=x,根据等腰三角形的性质与直角三角形的性质易得 x=30°,则∠ABE=60°故AB=BE=,则可求出求⊙A的面积;(3)由(1)知∠D=∠CFE=∠CBE,故tan∠CBE=,设EF=a,BE=2a,利用勾股定理求出 BD=2BF=,得AD=AB=,DE=2BE=4a,过F作FK∥BD交CE于K,利用平行线分线段成比例得,求得 , 即可求出tan∠C= 再求出cs∠C即可.
【详解】
解:∵,
∴,
∴△CEF∽△CBE,
∴∠CBE=∠CEF,
∵AE=AD,
∴∠ADE=∠AED=∠FEC=∠CBE,
∵BD为直径,
∴∠ADE+∠ABE=90°,
∴∠CBE+∠ABE=90°,
∴∠DBC=90°△ABC为直角三角形.
(2)∵BE=CE
∴设∠EBC=∠ECB=x,
∴∠BDE=∠EBC=x,
∵AE=AD
∴∠AED=∠ADE=x,
∴∠CEF=∠AED=x
∴∠BFE=2x
在△BDF中由△内角和可知:
3x=90°
∴x=30°
∴∠ABE=60°
∴AB=BE=
∴
(3)由(1)知:∠D=∠CFE=∠CBE,
∴tan∠CBE=,
设EF=a,BE=2a,
∴BF=,BD=2BF=,
∴AD=AB=,
∴,DE=2BE=4a,过F作FK∥BD交CE于K,
∴,
∵,
∴
∴,
∴tan∠C=
∴cs∠C=.
【点睛】
此题主要考查圆内的三角形综合问题,解题的关键是熟知圆的切线定理,等腰三角形的性质,及相似三角形的性质.
分数(单位:分)
100
90
80
70
60
人数
1
4
2
1
2
甲
乙
丙
单价(元/米2)
辽宁省大连市2024年九年级多校中考模拟联考数学试题(含解析): 这是一份辽宁省大连市2024年九年级多校中考模拟联考数学试题(含解析),共30页。试卷主要包含了已知下列材料在时的电阻率如下,下列计算正确的是,下列命题是真命题的是,在平面直角坐标系中,直线等内容,欢迎下载使用。
辽宁省葫芦岛市六校联考2021-2022学年中考冲刺卷数学试题含解析: 这是一份辽宁省葫芦岛市六校联考2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,将抛物线绕着点等内容,欢迎下载使用。
辽宁省大连西岗区七校联考2021-2022学年中考数学最后冲刺浓缩精华卷含解析: 这是一份辽宁省大连西岗区七校联考2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算中正确的是,如图,若一个正比例函数的图象经过A等内容,欢迎下载使用。