2021-2022学年江西省赣州市于都县重点达标名校中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:
(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧
(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( )
A.命题(1)与命题(2)都是真命题
B.命题(1)与命题(2)都是假命题
C.命题(1)是假命题,命题(2)是真命题
D.命题(1)是真命题,命题(2)是假命题
2.下列各式中,计算正确的是 ( )
A. B.
C. D.
3.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有( )个.
A.2 B.3 C.4 D.5
4.若3x>﹣3y,则下列不等式中一定成立的是 ( )
A. B. C. D.
5.已知是一个单位向量,、是非零向量,那么下列等式正确的是( )
A. B. C. D.
6.﹣3的相反数是( )
A. B. C. D.
7.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为( )
A.5 B.4 C.3 D.2
8.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )
A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤2
9.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( ).
A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>1
10.一个多边形的内角和比它的外角和的倍少180°,那么这个多边形的边数是( )
A.7 B.8 C.9 D.10
二、填空题(共7小题,每小题3分,满分21分)
11.在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形和圆的图案,现将印有图案的一面朝下,混合后从中随机抽取两张,则抽到卡片上印有图案都是轴对称图形的概率为_____.
12.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___
13.若代数式的值为零,则x=_____.
14.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.
15.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A)豆沙粽(B)小枣粽(C)蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.
16.菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.
17.如图,AB∥CD,BE交CD于点D,CE⊥BE于点E,若∠B=34°,则∠C的大小为________度.
三、解答题(共7小题,满分69分)
18.(10分)已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.求m的取值范围;如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.
19.(5分)在如图的正方形网格中,每一个小正方形的边长均为 1.格点三角形 ABC(顶点是网格线交点的三角形)的顶点 A、C 的坐标分别是(﹣2,0),(﹣3,3).
(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;
(2)把△ABC 绕坐标原点 O 顺时针旋转 90°得到△A1B1C1,画出△A1B1C1,写出点
B1的坐标;
(3)以坐标原点 O 为位似中心,相似比为 2,把△A1B1C1 放大为原来的 2 倍,得到△A2B2C2 画出△A2B2C2,使它与△AB1C1 在位似中心的同侧;
请在 x 轴上求作一点 P,使△PBB1 的周长最小,并写出点 P 的坐标.
20.(8分)如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是CB、DC延长上的动点,且始终保持BE=CF,连结AE、AF、EF.求证:AEF是等边三角形.
21.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
22.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明;
(3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.
23.(12分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
24.(14分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.
(1)∵P(a,b)在y=上, ∴a和b同号,所以对称轴在y轴左侧,
∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.
(2)∵函数y=的所有“派生函数”为y=ax2+bx, ∴x=0时,y=0,
∴所有“派生函数”为y=ax2+bx经过原点,
∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.
考点:(1)命题与定理;(2)新定义型
2、C
【解析】
接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.
【详解】
A、无法计算,故此选项错误;
B、a2•a3=a5,故此选项错误;
C、a3÷a2=a,正确;
D、(a2b)2=a4b2,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.
3、C
【解析】
根据AF是∠BAC的平分线,BH⊥AF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG=EB,FG=FB,即可判定②选项;设OA=OB=OC=a,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CF=GF=BF,由四边形ABCD是正方形和角度转换证明△OAE≌△OBG,即可判定①;则△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的关系式,再由△PGC∽△BGA,得到=1+,从而判断得出④;得出∠EAB=∠GBC从而证明△EAB≌△GBC,即可判定③;证明△FAB≌△PBC得到BF=CP,即可求出,从而判断⑤.
【详解】
解:∵AF是∠BAC的平分线,
∴∠GAH=∠BAH,
∵BH⊥AF,
∴∠AHG=∠AHB=90°,
在△AHG和△AHB中
,
∴△AHG≌△AHB(ASA),
∴GH=BH,
∴AF是线段BG的垂直平分线,
∴EG=EB,FG=FB,
∵四边形ABCD是正方形,
∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,
∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,
∴∠BEF=∠BFE,
∴EB=FB,
∴EG=EB=FB=FG,
∴四边形BEGF是菱形;②正确;
设OA=OB=OC=a,菱形BEGF的边长为b,
∵四边形BEGF是菱形,
∴GF∥OB,
∴∠CGF=∠COB=90°,
∴∠GFC=∠GCF=45°,
∴CG=GF=b,∠CGF=90°,
∴CF=GF=BF,
∵四边形ABCD是正方形,
∴OA=OB,∠AOE=∠BOG=90°,
∵BH⊥AF,
∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
∴∠OAE=∠OBG,
在△OAE和△OBG中
,
∴△OAE≌△OBG(ASA),①正确;
∴OG=OE=a﹣b,
∴△GOE是等腰直角三角形,
∴GE=OG,
∴b=(a﹣b),
整理得a=b,
∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,
∵四边形ABCD是正方形,
∴PC∥AB,
∴===1+,
∵△OAE≌△OBG,
∴AE=BG,
∴=1+,
∴==1﹣,④正确;
∵∠OAE=∠OBG,∠CAB=∠DBC=45°,
∴∠EAB=∠GBC,
在△EAB和△GBC中
,
∴△EAB≌△GBC(ASA),
∴BE=CG,③正确;
在△FAB和△PBC中
,
∴△FAB≌△PBC(ASA),
∴BF=CP,
∴====,⑤错误;
综上所述,正确的有4个,
故选:C.
【点睛】
本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.
4、A
【解析】
两边都除以3,得x>﹣y,两边都加y,得:x+y>0,
故选A.
5、B
【解析】
长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.
【详解】
A. 由于单位向量只限制长度,不确定方向,故错误;
B. 符合向量的长度及方向,正确;
C. 得出的是a的方向不是单位向量,故错误;
D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.
故答案选B.
【点睛】
本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.
6、D
【解析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
7、C
【解析】
根据左视图是从左面看到的图形求解即可.
【详解】
从左面看,可以看到3个正方形,面积为3,
故选:C.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.
8、A
【解析】
∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.
当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,
解得b≥.
当抛物线与x轴的交点的横坐标均大于等于0时,
设抛物线与x轴的交点的横坐标分别为x1,x2,
则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,
∴此种情况不存在.
∴b≥.
9、A
【解析】
∵一元二次方程mx2+2x-1=0有两个不相等的实数根,
∴m≠0,且22-4×m×(﹣1)>0,
解得:m>﹣1且m≠0.
故选A.
【点睛】
本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:
(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;
(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;
(3)当△=b2﹣4ac<0时,方程没有实数根.
10、A
【解析】
设这个正多边形的边数是n,就得到方程,从而求出边数,即可求出答案.
【详解】
设这个多边形的边数为n,依题意得:
180(n-2)=360×3-180,
解之得
n=7.
故选A.
【点睛】
本题主要考查多边形内角与外角的知识点,此题要结合多边形的内角和与外角和,根据题目中的等量关系,构建方程求解即可.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,画树状图展示所有12种等可能的结果数,再找出抽到卡片上印有图案都是轴对称图形的结果数,然后根据概率公式求解.
【详解】
解:用字母A、B、C、D分别表示等腰三角形、平行四边形、菱形和圆,
画树状图:
共有12种等可能的结果数,其中抽到卡片上印有图案都是轴对称图形的结果数为6,
所以抽到卡片上印有图案都是轴对称图形的概率.
故答案为.
【点睛】
本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了轴对称图形.
12、100°
【解析】
由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.
【详解】
解:∵PA=PB,
∴∠A=∠B,
在△AMK和△BKN中,
,
∴△AMK≌△BKN(SAS),
∴∠AMK=∠BKN,
∵∠A+∠AMK=∠MKN+∠BKN,
∴∠A=∠MKN=40°,
∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,
故答案为100°
【点睛】
本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.
13、3
【解析】
由题意得,=0,解得:x=3,经检验的x=3是原方程的根.
14、(-)cm2
【解析】
S阴影=S扇形-S△OBD= 52-×5×5=.
故答案是: .
15、120人, 3000人
【解析】
根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.
【详解】
调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);
若该社区有10000人,估计爱吃鲜肉粽的人数约为:100003000(人).
故答案为120人;3000人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.
16、2
【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.
点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.
17、56
【解析】
解:∵AB∥CD,
∴
又∵CE⊥BE,
∴Rt△CDE中,
故答案为56.
三、解答题(共7小题,满分69分)
18、(1)m≤1;(2)3≤m≤1.
【解析】
试题分析:(1)根据判别式的意义得到△=(-6)2-1(2m+1)≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=6,x1x2=2m+1,再利用2x1x2+x1+x2≥20得到2(2m+1)+6≥20,然后解不等式和利用(1)中的结论可确定满足条件的m的取值范围.
试题解析:
(1)根据题意得△=(-6)2-1(2m+1)≥0,
解得m≤1;
(2)根据题意得x1+x2=6,x1x2=2m+1,
而2x1x2+x1+x2≥20,所以2(2m+1)+6≥20, 解得m≥3,
而m≤1,所以m的范围为3≤m≤1.
19、(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).
【解析】
(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.
【详解】
解:(1)如图所示,点B的坐标为(﹣4,1);
(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);
(3)如图,△A2B2C2即为所求;
(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).
【点睛】
本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.
20、见解析
【解析】
分析:由等边三角形的性质即可得出∠ABE=∠ACF,由全等三角形的性质即可得出结论.
详解:证明:∵△ABC和△ACD均为等边三角形
∴AB=AC,∠ABC=∠ACD=60°,
∴∠ABE=∠ACF=120°,
∵BE=CF,
∴△ABE≌△ACF,
∴AE=AF,
∴∠EAB=∠FAC,
∴∠EAF=∠BAC=60°,
∴△AEF是等边三角形.
点睛:此题是四边形综合题,主要考查了等边三角形的性质和全等三角形的判定和性质,直角三角形的性质,相似三角形的判定和性质,解题关键是判断出△ABE≌△ACF.
21、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【解析】
(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
(3)分两种情形列出方程即可解决问题.
【详解】
解:(1)根据图象信息:货车的速度V货=,
∵轿车到达乙地的时间为货车出发后4.5小时,
∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
此时,货车距乙地的路程为:300﹣270=30(千米).
所以轿车到达乙地后,货车距乙地30千米.
故答案为30;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
,解得,
∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
易得OA:y=60x,
,解得,
∴当x=3.9时,轿车与货车相遇;
(3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
解得x=3.5或4.3小时.
答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【点睛】
本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
22、(1)y=﹣x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)(,2)或(,﹣2).
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.
【详解】
解:(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣,
∴抛物线解析式为y=﹣(x﹣2)2+3,即y=﹣x2+3x;
(2)△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形;
(3)存在.理由如下:
设直线BE解析式为y=kx+b,
把B、E坐标代入可得,解得,
∴直线BE解析式为y=x+1,
当x=2时,y=2,
∴F(2,2),
①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,
∴点M的纵坐标为2或﹣2,
在y=﹣x2+3x中,令y=2可得2=﹣x2+3x,解得x=,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x=,
∴M点坐标为(,2);
在y=﹣x2+3x中,令y=﹣2可得﹣2=﹣x2+3x,解得x=,
∵点M在抛物线对称轴右侧,
∴x>2,
∴x=,
∴M点坐标为(,﹣2);
②当AF为平行四边形的对角线时,
∵A(4,0),F(2,2),
∴线段AF的中点为(3,1),即平行四边形的对称中心为(3,1),
设M(t,﹣t2+3t),N(x,0),
则﹣t2+3t=2,解得t=,
∵点M在抛物线对称轴右侧,
∴x>2,
∵t>2,
∴t=,
∴M点坐标为(,2);
综上可知存在满足条件的点M,其坐标为(,2)或(,﹣2).
【点睛】
本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB各边的长度是解题的关键,在(3)中确定出M点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.
23、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【解析】
根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
【详解】
(1).
(2) 根据题意,得:
∵
∴当时,随x的增大而增大
∵
∴当时,取得最大值,最大值是144
答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
【点睛】
熟悉掌握图中所给信息以及列方程组是解决本题的关键.
24、 (1);
(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;
(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
【解析】
(1)根据销售额=销售量×销售价单x,列出函数关系式.
(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.
(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.
【详解】
解:(1)由题意得:,
∴w与x的函数关系式为:.
(2),
∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.
答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.
(3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.
∵3>28,∴x2=3不符合题意,应舍去.
答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.
安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析: 这是一份安徽安庆重点达标名校2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了答题时请按要求用笔,已知二次函数y=,在一组数据等内容,欢迎下载使用。
2022届江西省赣州市定南县重点名校中考数学猜题卷含解析: 这是一份2022届江西省赣州市定南县重点名校中考数学猜题卷含解析,共18页。
2021-2022学年泰安市泰山区重点达标名校中考猜题数学试卷含解析: 这是一份2021-2022学年泰安市泰山区重点达标名校中考猜题数学试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列几何体是棱锥的是等内容,欢迎下载使用。