2021-2022学年内蒙古鄂尔多斯市河南中学中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )
A.27 B.51 C.69 D.72
2.﹣2×(﹣5)的值是( )
A.﹣7 B.7 C.﹣10 D.10
3.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )
A. B.5 C.6 D.
4.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为( )
A.3 B.4 C.6 D.8
5.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为( )
A.60海里 B.45海里 C.20海里 D.30海里
6.已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )
A.3或6 B.1或6 C.1或3 D.4或6
7.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
8.下列事件中,属于必然事件的是( )
A.三角形的外心到三边的距离相等
B.某射击运动员射击一次,命中靶心
C.任意画一个三角形,其内角和是 180°
D.抛一枚硬币,落地后正面朝上
9.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )
A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚
10.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )
A.15° B.35° C.25° D.45°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
12.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.
13.对于任意不相等的两个实数,定义运算※如下:※=,如3※2==.那么8※4= .
14.如图,反比例函数y=(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是( )
A.1+ B.4+ C.4 D.-1+
15.如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为_____.
16.已知一个多边形的每一个内角都是,则这个多边形是_________边形.
三、解答题(共8题,共72分)
17.(8分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.
求证:;
若的直径长8,,求BE的长.
18.(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x/(元/千克)
50
60
70
销售量y/千克
100
80
60
(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?
19.(8分)在“双十二”期间,两个超市开展促销活动,活动方式如下:
超市:购物金额打9折后,若超过2000元再优惠300元;
超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
20.(8分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD= ;
②若∠BAC=90°(如图3),BC=6,AD= ;
(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.
21.(8分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
22.(10分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.
(1)求山西省的丘陵面积与平原面积;
(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?
23.(12分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.
24.计算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣1
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.
解:设第一个数为x,则第二个数为x+7,第三个数为x+1
故三个数的和为x+x+7+x+1=3x+21
当x=16时,3x+21=69;
当x=10时,3x+21=51;
当x=2时,3x+21=2.
故任意圈出一竖列上相邻的三个数的和不可能是3.
故选D.
“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
2、D
【解析】
根据有理数乘法法则计算.
【详解】
﹣2×(﹣5)=+(2×5)=10.
故选D.
【点睛】
考查了有理数的乘法法则,(1) 两数相乘,同号得正,异号得负,并把绝对值相乘;(2) 任何数同0相乘,都得0;(3) 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4) 几个数相乘,有一个因数为0时,积为0 .
3、B
【解析】
易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.
【详解】
若点E在BC上时,如图
∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,
∴∠CFE=∠AEB,
∵在△CFE和△BEA中,
,
∴△CFE∽△BEA,
由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣,即,
∴,
当y=时,代入方程式解得:x1=(舍去),x2=,
∴BE=CE=1,∴BC=2,AB=,
∴矩形ABCD的面积为2×=5;
故选B.
【点睛】
本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.
4、C
【解析】
根据题意可以求出这个正n边形的中心角是60°,即可求出边数.
【详解】
⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,
则这个正n边形的中心角是60°,
n的值为6,
故选:C
【点睛】
考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.
5、D
【解析】
根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.
【详解】
解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,
故AB=2AP=60(海里),
则此时轮船所在位置B处与灯塔P之间的距离为:BP=(海里)
故选:D.
【点睛】
此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.
6、B
【解析】
分析:分h<2、2≤h≤5和h>5三种情况考虑:当h<2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h>5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论.综上即可得出结论.
详解:如图,
当h<2时,有-(2-h)2=-1,
解得:h1=1,h2=3(舍去);
当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;
当h>5时,有-(5-h)2=-1,
解得:h3=4(舍去),h4=1.
综上所述:h的值为1或1.
故选B.
点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.
7、B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
8、C
【解析】
分析:必然事件就是一定发生的事件,依据定义即可作出判断.
详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、三角形的内角和是180°,是必然事件,故本选项符合题意;
D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
故选C.
点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
9、A
【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
考点:一元一次方程的应用
10、A
【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.
【详解】
∵AB=AC,
∴∠ABC=∠ACB=65°,
∴∠A=180°-∠ABC-∠ACB=50°,
∵DC//AB,
∴∠ACD=∠A=50°,
又∵∠D=∠A=50°,
∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,
故选A.
【点睛】
本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、50(1﹣x)2=1.
【解析】
由题意可得,
50(1−x)²=1,
故答案为50(1−x)²=1.
12、1.
【解析】
直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.
【详解】
如图所示:
∵坡度i=1:0.75,
∴AC:BC=1:0.75=4:3,
∴设AC=4x,则BC=3x,
∴AB==5x,
∵AB=20m,
∴5x=20,
解得:x=4,
故3x=1,
故这个物体在水平方向上前进了1m.
故答案为:1.
【点睛】
此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.
13、
【解析】
根据新定义的运算法则进行计算即可得.
【详解】
∵※=,
∴8※4=,
故答案为.
14、A
【解析】
根据反比例函数图象上点的坐标特征由A点坐标为(-2,2)得到k=-4,即反比例函数解析式为y=-,且OB=AB=2,则可判断△OAB为等腰直角三角形,所以∠AOB=45°,再利用PQ⊥OA可得到∠OPQ=45°,然后轴对称的性质得PB=PB′,BB′⊥PQ,所以∠BPQ=∠B′PQ=45°,于是得到B′P⊥y轴,则点B的坐标可表示为(-,t),于是利用PB=PB′得t-2=|-|=,然后解方程可得到满足条件的t的值.
【详解】
如图,
∵点A坐标为(-2,2),
∴k=-2×2=-4,
∴反比例函数解析式为y=-,
∵OB=AB=2,
∴△OAB为等腰直角三角形,
∴∠AOB=45°,
∵PQ⊥OA,
∴∠OPQ=45°,
∵点B和点B′关于直线l对称,
∴PB=PB′,BB′⊥PQ,
∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,
∴B′P⊥y轴,
∴点B′的坐标为(- ,t),
∵PB=PB′,
∴t-2=|-|=,
整理得t2-2t-4=0,解得t1= ,t2=1- (不符合题意,舍去),
∴t的值为.
故选A.
【点睛】
本题是反比例函数的综合题,解决本题要掌握反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质及会用求根公式法解一元二次方程.
15、4
【解析】
根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案.
【详解】
∵二次函数的对称轴为直线x=2, ∴点A的坐标为(4,0),∵点C的坐标为(0,-2),
∴点B的坐标为(4,-2), ∴BC=4,则.
【点睛】
本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.
16、十
【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
【详解】
解:180°﹣144°=36°,360°÷36°=1,∴这个多边形的边数是1.
故答案为十.
【点睛】
本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
三、解答题(共8题,共72分)
17、(1)证明见解析;(2).
【解析】
先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;
作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.
【详解】
证明:,,
,
是的切线,
,
,
.
平分,
,
,
;
解:作于F,如图,
的直径长8,
.
,
,
,
,
在中,
设,则,
,即,解得,
.
故答案为(1)证明见解析;(2) .
【点睛】
本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.
18、 (1)y=-2x+200 (2)W=-2x2+280x-8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.
【解析】
(1)用待定系数法求一次函数的表达式;
(2)利用利润的定义,求与之间的函数表达式;
(3)利用二次函数的性质求极值.
【详解】
解:(1)设,由题意,得,解得,∴所求函数表达式为.
(2).
(3),其中,∵,
∴当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.
考点: 二次函数的实际应用.
19、(1)这种篮球的标价为每个50元;(2)见解析
【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
【详解】
(1)设这种篮球的标价为每个x元,
依题意,得,
解得:x=50,
经检验:x=50是原方程的解,且符合题意,
答:这种篮球的标价为每个50元;
(2)购买100个篮球,最少的费用为3850元,
单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
单独在B超市购买:100×50×0.8=4000元,
在A、B两个超市共买100个,
根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
20、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
【解析】
(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
【详解】
(1)①∵△ABC是等边三角形,BC=1,
∴AB=AC=1,∠BAC=60,
∴AB′=AC′=1,∠B′AC′=120°.
∵AD为等腰△AB′C′的中线,
∴AD⊥B′C′,∠C′=30°,
∴∠ADC′=90°.
在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
∴AD=AC′=2.
②∵∠BAC=90°,
∴∠B′AC′=90°.
在△ABC和△AB′C′中,,
∴△ABC≌△AB′C′(SAS),
∴B′C′=BC=6,
∴AD=B′C′=3.
故答案为:①2;②3.
(2)AD=BC.
证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
∴∠BAC=∠AB′E.
在△BAC和△AB′E中,,
∴△BAC≌△AB′E(SAS),
∴BC=AE.
∵AD=AE,
∴AD=BC.
(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
∵PB=PC,PF⊥BC,
∴PF为△PBC的中位线,
∴PF=AD=3.
在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
∴BF==1,
∴BC=2BF=4.
【点睛】
本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.
21、证明见解析.
【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【点睛】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
22、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.
【解析】
(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;
(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.
【详解】
解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.
由题意:x+2x+0.8+5.59=15.66,
解得x=3.09,
2x+0.8=6.98,
答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.
(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.
由题意:y甲=30×0.9m=27m,
y乙=30×0.8(m+2)=24m+48,
当y甲=y乙时,27m=24m+48,m=16,
当y甲>y乙时,27m>24m+48,m>16,
当y甲<y乙时,27m<24m+48,m<16,
答:当学生人数为16人时,两个旅行社的费用一样.
当学生人数为大于16人时,乙旅行社比较合算.
当学生人数为小于16人时,甲旅行社比较合算.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.
23、(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.
【解析】
(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
【详解】
(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).
又∵m=162﹣3x,∴y=(x﹣2)(162﹣3x),即y=﹣3x2+252x﹣1.
∵x﹣2≥0,∴x≥2.
又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x2+252x﹣1(2≤x≤54).
(2)由(1)得y=﹣3x2+252x﹣1=﹣3(x﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.
【点睛】
本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
24、1
【解析】
本题涉及绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方5个考点,先针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.
【详解】
解:原式=2﹣+2×﹣3+1
=1.
【点睛】
本题考查实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握绝对值、特殊角的三角函数值、负指数幂、二次根式化简、乘方等考点的运算.
内蒙古鄂尔多斯市准格尔旗2022年中考考前最后一卷数学试卷含解析: 这是一份内蒙古鄂尔多斯市准格尔旗2022年中考考前最后一卷数学试卷含解析,共23页。试卷主要包含了今年春节某一天早7,下列计算正确的是等内容,欢迎下载使用。
南通启秀中学2021-2022学年中考数学考前最后一卷含解析: 这是一份南通启秀中学2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了计算的结果是,计算等内容,欢迎下载使用。
2021-2022学年山东省青岛育才中学中考考前最后一卷数学试卷含解析: 这是一份2021-2022学年山东省青岛育才中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,方程的解是等内容,欢迎下载使用。