2021芜湖安师大附属高中高三下学期5月最后一卷理科数学试题含答案
展开安徽师范大学附属中学2021届高三5月最后一卷
理科数学试题
本试卷共4页, 考试时间:120分钟 全卷满分:150分
注意事项:
1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(共60分)
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合,,则( )
A. B.(0,+∞) C. D.
2.的展开式中常数项为( )
A.—15 B.—20 C.15 D.20
3.已知m、n、l是三条不同的直线,α、β是两个不同的平面,则下面说法中正确的是( )
A.若m⊂α,n⊂α,且l⊥m,l⊥n,则l⊥α B.若l⊂α,n⊂β,且l⊥n,则l⊥β
C.若m⊥α,且l⊥m,则l∥α D.若m⊥α,n⊥β,且l∥m,l∥n,则α∥β
4.已知某运动员每次投篮命中的概率都为0.4. 现采用随机模拟的方法估计该运动员三次投篮中至多两次命中的概率:先由计算器产生0到9之间取整数值的随机数,1、2、3、4表示命中,5、6、7、8、9、0表示没有命中;再以每三个随机数为一组,代表三次投篮的结果. 经随机模拟产生了20组随机数:907 966 191 925 271 932 312 458 569 683 431 257 393 025 556 488 730 113 537 920 .据此估计,该运动员三次投篮中至多两次命中的概率为()
A.0.25 B.0.35 C.0.85 D.0.90
5.在中,是角所对的两条边.下列六个条件中,是“”的充分必要条件的个
数是 ( )
①; ②; ③;
④; ⑤; ⑥.
A. B. C. D.
6.2021年是中国共产党百年华诞.某学校社团将举办庆祝中国共产党成立100周年革命歌曲展演.现从《歌唱祖国》《英雄赞歌》《唱支山歌给党听》《毛主席派人来》4首独唱歌曲和《没有共产党就没有新中国》《我和我的祖国》2首合唱歌曲中共选出4首歌曲安排演出,要求最后一首歌曲必须是合唱,则不同的安排方法共有( )
A.24 B.48 C.72 D.120
7.已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为( )
A. B. C. D.
8.已知则( )
A. B. C. D.
9.设为椭圆上一点,点关于原点的对称点为,为椭圆的右焦点,且,若,则该椭圆离心率的取值范围为()
A.B.C.D.
10.已知函数,若方程恰有三个不同的实数根,则实数的取值范围是( )
A. B. C. D.
11.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式.人们还用过一些类似的近似公式.根据……判断,下列近似公式中最精确的一个是( )
A. B. C. D.
12.如图所示,圆锥的轴截面是以P为直角顶点的等腰直角三角形,,C为PA中点.若底面所在平面上有一个动点,且始终保持,过点作PM的垂线,垂足为H. 当点运动时,
① 点H在空间形成的轨迹为圆
② 三棱锥的体积最大值为
③的最大值为2
④与平面PAB所成角的正切值的最大值为
上述结论中正确的序号为( )
A.①② B.②③ C.①③④ D.①②③
二、填空题:本大题共四小题,每小题5分,共20分.
13.已知向量(2,m),(1,﹣2),若⊥,则m= .
14.若复数在复平面内所对应的点的坐标为,则 .
15.已知正项等比数列{an}的前n项和为Sn,且S8-2S4=5,则a9+a10+a11+a12的最小值为
________.
16. 函数,已知为图象的一个对称中心,直线为图象的一条对称轴,且在上单调递减.记满足条件的所有的值为____________.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
17.(本小题满分12分)己知锐角△ABC中,角A,B,C的对边分别为a,b,c,且满足(2b﹣c)cosA﹣acosC=0.
(1)求角A的大小;
(2)求cosB+cosC的取值范围.
18.(本小题满分12分)如图所示的几何体是由等高的半个圆柱和个圆柱拼接而成,点为弧的中点,且、、、四点共面.
(1)证明:平面平面;
(2)若,求平面与平面所成锐二
面角的余弦值.
19.(本小题满分12分)市教育局计划举办某知识竞赛,先在,,,四个赛区举办预赛,每位参赛选手先参加“赛区预赛”,预赛得分不低于100分就可以成功晋级决赛. 赛区预赛的具体规则如下:每位选手可以在以下两种答题方式中任意选择一种答题.方式一:每轮必答2个问题,共回答6轮,每轮答题只要不是2题都错,则该轮次中参赛选手得20分,否则得0分,各轮答题的得分之和即为预赛得分;方式二:每轮必答3个问题,共回答4轮,在每一轮答题中,若答对不少于2题,则该轮次中参赛选手得30分,如果仅答对1题,则得20分,否则得0分.各轮答题的得分之和即为预赛得分.记某选手每个问题答对的概率均为.
(1)若,求该选手选择方式二答题晋级的概率;
(2)证明:该选手选择两种方式答题的得分期望相等.
20.(本小题满分12分)设抛物线的焦点为,过点的动直线与抛物线交于,两点,当在上时,直线的斜率为.
(1)求抛物线的方程;
(2)在线段上取点,满足,,证明:点总在定直线上.
21. (本小题满分12分)已知函数,.
(1)若函数在区间内的单调递增,求的取值范围;
(2)证明:对任意,.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做
的第一个题目计分.(满分10分)
22.已知平面直角坐标系中,曲线经过伸缩变换得到曲线,直
线过点,斜率为,且与曲线交于两点.
(1)求曲线的普通方程和直线的参数方程;
(2)求的值.
23.已知函数.
(1)求的最大值m;
(2)已知,且,求证:
参考答案
一、选择题
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 | D | B | D | C | A | D | B | D | B | A |
|
|
二、填空题
13. 1 14.
15. 20 16.
三、解答题
17.解:(1)由正弦定理知,,
∵(2b﹣c)cosA﹣acosC=0,
∴(2sinB﹣sinC)cosA﹣sinAcosC=0,
∴2sinBcosA﹣sinCcosA﹣sinAcosC=2sinBcosA﹣sin(A+C)=2sinBcosA﹣sinB=0,
∵sinB≠0,
∴cosA,
∵A∈(0,),∴A.
(2)由(1)知,B+C,
∵锐角△ABC,
∴,解得B,
∴cosB+cosC=cosB+cos(B)=cosBcosBsinBcosBsinB=sin(B),
∵B,∴B,
∴sin(B)∈(,1],
故cosB+cosC的取值范围为(,1].
18.解:布(1)如图,连接,
因为几何体是由等高的半个圆柱和个圆柱拼接而成,
所以,,,
因为,,
所以四边形为平行四边形,,,
因为平面,平面,所以,
因为,所以平面,
因为因为平面,所以平面平面.
(2)如图,以为坐标原点建立空间直角坐标系,
则、、、、,
,,,,
设平面的一个法向量为,
则,整理得,令,则,
设平面的一个法向量为,
则,整理得,令,则,
,
所以平面与平面所成锐二面角的余弦值为.
19.解:(1)该选手选择方式二答题,记每轮得分为,则可取值为0,20,30,
且,,
记预赛得分为,
∴该选手所以选择方式二答题晋级的概率为.
(2)该选手选择方式一答题:
设每轮得分为,则可取值为0,20,
且,
∴,
设预赛得分为,则,
.
该选手选择方式二答题:
设每轮得分为,则可取值为0,20,30,且
,
,
,
∴.
设预赛得分为,则
,
因为,所以该选手选择两种方式答题的得分期望相等.
20.解:(1)解由题意,得,
则,
解得
故抛物线的方程为.
(2)证明:设,,,直线的方程为.
由得,
,.
由,,得,,
故
化简得
又,故
化简得,
即
则或.
当点在定直线上时,直线与抛物线只有一个交点,与题意不符.
故点在定直线上.
21. 【解析】
(1)因为,
所以.
因为,所以,则.
(ⅰ)当时,则,,即此时在()上单增.
符合题意.
(ⅱ)当时,此时,在()上单减.
要使在()上单增,只需要对恒成立,
即只需要恒成立即可,
.
综上可知,当时,函数在上单调递增.
(2)由(1)知,当时,,即,
所以.
令,所以,从而,
所以,
首先,当时,,所以;
其次,
因为
,
所以,
所以.
故可得到:对恒成立.
2022届安徽省芜湖一中、安师大附中等皖江名校高三5月最后一卷理科数学试题(PDF版): 这是一份2022届安徽省芜湖一中、安师大附中等皖江名校高三5月最后一卷理科数学试题(PDF版),共12页。
2022届安徽省芜湖一中、安师大附中等皖江名校高三5月最后一卷文科数学试题(PDF版): 这是一份2022届安徽省芜湖一中、安师大附中等皖江名校高三5月最后一卷文科数学试题(PDF版),文件包含2022届安徽省芜湖一中安师大附中等皖江名校高三最后一卷文科数学试题pdf、数学·联考文科参考答案pdf等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
2021芜湖安师大附属高中高三下学期5月最后一卷文科数学试题PDF版含答案: 这是一份2021芜湖安师大附属高中高三下学期5月最后一卷文科数学试题PDF版含答案,共12页。