2021-2022学年江苏省南京师大二附中中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.﹣18的倒数是( )
A.18 B.﹣18 C.- D.
2.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
3.关于的叙述正确的是( )
A.= B.在数轴上不存在表示的点
C.=± D.与最接近的整数是3
4.据调查,某班20为女同学所穿鞋子的尺码如表所示,
尺码(码)
34
35
36
37
38
人数
2
5
10
2
1
则鞋子尺码的众数和中位数分别是( )
A.35码,35码 B.35码,36码 C.36码,35码 D.36码,36码
5.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是( )
A. B. C. D.
6.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为( )
A.1 B.4 C.8 D.12
7.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则+的值是( )
A.1 B.2 C.﹣ D.﹣
8.方程有两个实数根,则k的取值范围是( ).
A.k≥1 B.k≤1 C.k>1 D.k<1
9.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根
10.下列因式分解正确的是( )
A. B.
C. D.
11.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )
A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为2
12.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( )
A. cm B.2 cm C.2cm D. cm
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是___.
14.将直尺和直角三角尺按如图方式摆放.若,,则________.
15.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .
16.分解因式:a3-a=
17.若点与点关于原点对称,则______.
18.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在平面直角坐标系xOy中,点M的坐标为,点N的坐标为,且,,我们规定:如果存在点P,使是以线段MN为直角边的等腰直角三角形,那么称点P为点M、N的“和谐点”.
(1)已知点A的坐标为,
①若点B的坐标为,在直线AB的上方,存在点A,B的“和谐点”C,直接写出点C的坐标;
②点C在直线x=5上,且点C为点A,B的“和谐点”,求直线AC的表达式.
(2)⊙O的半径为r,点为点、的“和谐点”,且DE=2,若使得与⊙O有交点,画出示意图直接写出半径r的取值范围.
20.(6分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a,第二次出现的点数为b,则以方程组的解为坐标的点在第四象限的概率为_____.
21.(6分)某水果批发市场香蕉的价格如下表
购买香蕉数(千克)
不超过20千克
20千克以上但不超过40千克
40千克以上
每千克的价格
6元
5元
4元
张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?
22.(8分)如图 1,在平面直角坐标系中,O 是坐标原点,长方形 OACB 的顶点 A、B 分别在 x 轴与 y 轴上,已知 OA=6,OB=1.点 D 为 y 轴上一点,其坐标为(0,2), 点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣CB 的方向运动,当点 P 与点 B 重合 时停止运动,运动时间为 t 秒.
(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;
(2)如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.
(3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点 P 的坐标;若 不存在,请说明理由.
23.(8分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
24.(10分)如图,分别延长▱ABCD的边到,使,连接EF,分别交于,连结求证:.
25.(10分)路边路灯的灯柱垂直于地面,灯杆的长为2米,灯杆与灯柱成角,锥形灯罩的轴线与灯杆垂直,且灯罩轴线正好通过道路路面的中心线(在中心线上).已知点与点之间的距离为12米,求灯柱的高.(结果保留根号)
26.(12分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
(1)求此抛物线的解析式;
(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
27.(12分)如图,四边形AOBC是正方形,点C的坐标是(4,0).正方形AOBC的边长为 ,点A的坐标是 .将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.
【详解】
∵-18=1,
∴﹣18的倒数是,
故选C.
【点睛】
本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
2、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
3、D
【解析】
根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.
【详解】
选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;
选项D,与最接近的整数是=1.
故选D.
【点睛】
本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.
4、D
【解析】
众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
数据36出现了10次,次数最多,所以众数为36,
一共有20个数据,位置处于中间的数是:36,36,所以中位数是(36+36)÷2=36.
故选D.
【点睛】
考查中位数与众数,掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数是解题的关键.
5、D
【解析】
根据要求画出图形,即可解决问题.
【详解】
解:根据题意,作出图形,如图:
观察图象可知:A2(4,2);
故选:D.
【点睛】
本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.
6、B
【解析】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
【详解】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
则x1、x2为方程ax2+bx+c=0的两根,
∴x1+x2=-,x1•x2=,
∴AB=|x1-x2|====,
∵△ABP组成的三角形恰为等腰直角三角形,
∴||=•,
=,
∴b2-1ac=1.
故选B.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
7、C
【解析】
试题分析:找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用异分母分式的变形,将求出的两根之和x1+x2=3与两根之积x1•x2=﹣4代入,即可求出=.
故选C.
考点:根与系数的关系
8、D
【解析】
当k=1时,原方程不成立,故k≠1,
当k≠1时,方程为一元二次方程.
∵此方程有两个实数根,
∴,解得:k≤1.
综上k的取值范围是k<1.故选D.
9、C
【解析】
试题分析:由得,,即是判断函数与函数的图象的交点情况.
因为函数与函数的图象只有一个交点
所以方程只有一个实数根
故选C.
考点:函数的图象
点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.
10、C
【解析】
依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.
【详解】
解:D选项中,多项式x2-x+2在实数范围内不能因式分解;
选项B,A中的等式不成立;
选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.
故选C.
【点睛】
本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.
11、A
【解析】
根据中位数,众数,平均数,方差等知识即可判断;
【详解】
观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.
故选A.
【点睛】
本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.
12、B
【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
【详解】
解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
故选择B.
【点睛】
本题考查了圆锥的概念和弧长的计算.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12
【解析】
根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出线段长度解答.
【详解】
根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.
【点睛】
本题考查动点问题的函数图象,解题的关键是注意结合图象求出线段的长度,本题属于中等题型.
14、80°.
【解析】
由于直尺外形是矩形,根据矩形的性质可知对边平行,所以∠4=∠3,再根据外角的性质即可求出结果.
【详解】
解:如图所示,依题意得:∠4=∠3,
∵∠4=∠2+∠1=80°
∴∠3=80°.
故答案为80°.
【点睛】
本题考查了平行线的性质和三角形外角的性质,掌握三角形外角的性质是解题的关键.
15、.
【解析】
根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为.
考点:概率公式.
16、
【解析】
a3-a=a(a2-1)=
17、1
【解析】
∵点P(m,﹣2)与点Q(3,n)关于原点对称,
∴m=﹣3,n=2,
则(m+n)2018=(﹣3+2)2018=1,
故答案为1.
18、
【解析】
试题解析:根据题意,得:
解得:
故答案为
【点睛】
:一个正数有2个平方根,它们互为相反数.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)①点C坐标为或;②y=x+2或y=-x+3;(2)或
【解析】
(1)①根据“和谐点”的定义即可解决问题;
②首先求出点C坐标,再利用待定系数法即可解决问题;
(2)分两种情形画出图形即可解决问题.
【详解】
(1)①如图1.
观察图象可知满足条件的点C坐标为C(1,5)或C'(3,5);
②如图2.
由图可知,B(5,3).
∵A(1,3),∴AB=3.
∵△ABC为等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).
设直线AC的表达式为y=kx+b(k≠0),当C1(5,7)时,,∴,∴y=x+2,当C2(5,﹣1)时,,∴,∴y=﹣x+3.
综上所述:直线AC的表达式是y=x+2或y=﹣x+3.
(2)分两种情况讨论:
①当点F在点E左侧时:
连接OD.则OD=,∴.
②当点F在点E右侧时:
连接OE,OD.
∵E(1,2),D(1,3),∴OE=,OD=,∴.
综上所述:或.
【点睛】
本题考查了一次函数综合题、圆的有关知识、等腰直角三角形的判定和性质、“和谐点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的首先思考问题,属于中考压轴题.
20、
【解析】
解方程组,根据条件确定a、b的范围,从而确定满足该条件的结果个数,利用古典概率的概率公式求出方程组只有一个解的概率.
【详解】
∵,
得
若b>2a,
即a=2,3,4,5,6 b=4,5,6
符合条件的数组有(2,5)(2,6)共有2个,
若b<2a,
符合条件的数组有(1,1)共有1个,
∴概率p=.
故答案为:.
【点睛】
本题主要考查了古典概率及其概率计算公式的应用.
21、第一次买14千克香蕉,第二次买36千克香蕉
【解析】
本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.
【详解】
设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.
则①当0<x≤20,y≤40,则题意可得
.
解得.
②当0<x≤20,y>40时,由题意可得
.
解得.(不合题意,舍去)
③当20<x<3时,则3<y<2,此时张强用去的款项为
5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);
④当20<x≤40 y>40时,总质量将大于60kg,不符合题意,
答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.
【点睛】
本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.
22、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②点P的坐标是(,1);(3)存在,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
【解析】
分析:(1)设直线DP解析式为y=kx+b,将D与B坐标代入求出k与b的值,即可确定出解析式;
(2)①当P在AC段时,三角形ODP底OD与高为固定值,求出此时面积;当P在BC段时,底边OD为固定值,表示出高,即可列出S与t的关系式;
②设P(m,1),则PB=PB′=m,根据勾股定理求出m的值,求出此时P坐标即可;
(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.
详解:(1)如图1,
∵OA=6,OB=1,四边形OACB为长方形,
∴C(6,1).
设此时直线DP解析式为y=kx+b,
把(0,2),C(6,1)分别代入,得
,解得
则此时直线DP解析式为y=x+2;
(2)①当点P在线段AC上时,OD=2,高为6,S=6;
当点P在线段BC上时,OD=2,高为6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;
②设P(m,1),则PB=PB′=m,如图2,
∵OB′=OB=1,OA=6,
∴AB′==8,
∴B′C=1﹣8=2,
∵PC=6﹣m,
∴m2=22+(6﹣m)2,解得m=
则此时点P的坐标是(,1);
(3)存在,理由为:
若△BDP为等腰三角形,分三种情况考虑:如图3,
①当BD=BP1=OB﹣OD=1﹣2=8,
在Rt△BCP1中,BP1=8,BC=6,
根据勾股定理得:CP1==2,
∴AP1=1﹣2,即P1(6,1﹣2);
②当BP2=DP2时,此时P2(6,6);
③当DB=DP3=8时,
在Rt△DEP3中,DE=6,
根据勾股定理得:P3E==2,
∴AP3=AE+EP3=2+2,即P3(6,2+2),
综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,1﹣2).
点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.
23、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析
【解析】
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
(3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
【详解】
(1)由抛物线的对称轴是,可设解析式为.
把A、B两点坐标代入上式,得
解之,得
故抛物线解析式为,顶点为
(2)∵点在抛物线上,位于第四象限,且坐标适合
,
∴y<0,即-y>0,-y表示点E到OA的距离.
∵OA是的对角线,
∴.
因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的
取值范围是1<<1.
(3)①根据题意,当S = 24时,即.
化简,得解之,得
故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
点E1(3,-4)满足OE = AE,所以是菱形;
点E2(4,-4)不满足OE = AE,所以不是菱形.
②当OA⊥EF,且OA = EF时,是正方形,
此时点E的坐标只能是(3,-3).
而坐标为(3,-3)的点不在抛物线上,
故不存在这样的点E,使为正方形.
24、证明见解析
【解析】
分析:根据平行四边形的性质以及已知的条件得出△EGD和△FHB全等,从而得出DG=BH,从而说明AG和CH平行且相等,得出四边形AHCG为平行四边形,从而得出答案.
详解:证明:在▱ABCD中,,
,又 ,≌,
,,又,
四边形AGCH为平行四边形, .
点睛:本题主要考查的是平行四边形的性质以及判定定理,属于基础题型.解决这个问题的关键就是根据平行四边形的性质得出四边形AHCG为平行四边形.
25、
【解析】
设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.
【详解】
解:设灯柱的长为米,过点作于点过点做于点
∴四边形为矩形,
∵∴
又∵∴
在中,
∴
∴又∴
在中,
解得,(米)
∴灯柱的高为米.
26、(1);(2)-2或-1;(3)-1≤n<1或1
(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
(2)根据题意画出图形,分三种情况进行讨论;
(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
【详解】
解:(1)依题意,得:
解得:
∴此抛物线的解析式 ;
(2)设直线AB的解析式为y=kx+b,依题意得:
解得:
∴直线AB的解析式为y=-x.
∵点P的横坐标为m,且在抛物线上,
∴点P的坐标为(m, )
∵轴,且点Q有线段AB上,
∴点Q的坐标为(m,-m)
① 当PQ=AP时,如图,∵∠APQ=90°,轴,
∴
解得,m=-2或m=1(舍去)
② 当AQ=AP时,如图,过点A作AC⊥PQ于C,
∵为等腰直角三角形,
∴2AC=PQ
即m=1(舍去)或m=-1.
综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
(3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
∴点E的坐标为(n,n-2)
当点E恰好在抛物线上时,解得,n=-1.
∴此时n的取值范围-1≤n<1.
②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
当点E在抛物线上时,
解得,n=3或n=1.
∵n>1.
∴n=3.
∴此时n的取值范围1
【点睛】
本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
27、(1)4,;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3).
【解析】
(1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
(2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;
(3)根据P、Q点在不同的线段上运动情况,可分为三种列式①当点P、Q分别在OA、OB时,②当点P在OA上,点Q在BC上时,③当点P、Q在AC上时,可方程得出t.
【详解】
解:(1)连接AB,与OC交于点D,
四边形是正方形,
∴△OCA为等腰Rt△,
∴AD=OD=OC=2,
∴点A的坐标为.
4,.
(2)如图
∵ 四边形是正方形,
∴,.
∵ 将正方形绕点顺时针旋转,
∴ 点落在轴上.
∴.
∴ 点的坐标为.
∵,
∴.
∵ 四边形,是正方形,
∴,.
∴,.
∴.
∴.
∵,
,
∴ .
∴旋转后的正方形与原正方形的重叠部分的面积为.
(3)设t秒后两点相遇,3t=16,∴t=
①当点P、Q分别在OA、OB时,
∵,OP=t,OQ=2t
∴不能为等腰三角形
②当点P在OA上,点Q在BC上时如图2,
当OQ=QP,QM为OP的垂直平分线,
OP=2OM=2BQ,OP=t,BQ=2t-4,
t=2(2t-4),
解得:t=.
③当点P、Q在AC上时,
不能为等腰三角形
综上所述,当时是等腰三角形
【点睛】
此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.
2023年江苏省南京师大附中行知分校中考数学零模试卷(含解析): 这是一份2023年江苏省南京师大附中行知分校中考数学零模试卷(含解析),共21页。试卷主要包含了2= 等内容,欢迎下载使用。
2023年江苏省南京师大附中新城分校中考数学二模试卷(含解析): 这是一份2023年江苏省南京师大附中新城分校中考数学二模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江苏省南京师大附中中考数学二模试卷(含解析): 这是一份2023年江苏省南京师大附中中考数学二模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。