2021-2022学年江苏省淮安市淮阴师范院附属中学中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
2.如果y=++3,那么yx的算术平方根是( )
A.2 B.3 C.9 D.±3
3.下列几何体中三视图完全相同的是( )
A. B. C. D.
4.估计的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
5.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
6.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A.3cm B. cm C.2.5cm D. cm
7.下列运算正确的是( )
A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
8.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )
A. B.π C.π D.π
9.如图所示的几何体的主视图正确的是( )
A. B. C. D.
10.下列方程中,没有实数根的是( )
A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0
二、填空题(共7小题,每小题3分,满分21分)
11.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.
12.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.
13.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m.
14.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.
15.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
16.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为______cm .
17.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
(1)求tan∠ADF的值;
(2)证明:DE是⊙O的切线;
(3)若⊙O的半径R=5,求EF的长.
19.(5分)根据图中给出的信息,解答下列问题:
放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
20.(8分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
(1)求∠EAD的余切值;
(2)求的值.
21.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.
22.(10分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.
23.(12分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.
(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;
(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.
24.(14分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c=1,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;
③由抛物线的开口向下知a<1,
∵对称轴为1>x=﹣>1,
∴2a+b<1,
故本选项正确;
④对称轴为x=﹣>1,
∴a、b异号,即b>1,
∴abc<1,
故本选项错误;
∴正确结论的序号为②③.
故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;
(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;
(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
2、B
【解析】
解:由题意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则yx=9,9的算术平方根是1.故选B.
3、A
【解析】
找到从物体正面、左面和上面看得到的图形全等的几何体即可.
【详解】
解:A、球的三视图完全相同,都是圆,正确;
B、圆柱的俯视图与主视图和左视图不同,错误;
C、圆锥的俯视图与主视图和左视图不同,错误;
D、四棱锥的俯视图与主视图和左视图不同,错误;
故选A.
【点睛】
考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
4、C
【解析】
∵ ,
∴.
即的值在6和7之间.
故选C.
5、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
6、D
【解析】
分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
详解:连接OB,
∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
解得:OE=3,
∴OB=3+2=5,
∴EC=5+3=1.
在Rt△EBC中,BC=.
∵OF⊥BC,
∴∠OFC=∠CEB=90°.
∵∠C=∠C,
∴△OFC∽△BEC,
∴,即,
解得:OF=.
故选D.
点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
7、D
【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.
【详解】A、2a﹣a=a,故本选项错误;
B、2a与b不是同类项,不能合并,故本选项错误;
C、(a4)3=a12,故本选项错误;
D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,
故选D.
【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.
8、C
【解析】
过点作,
∵,
∴,,
∴为等腰直角三角形,,
,
∵为等边三角形,
∴,
∴.
∴.故选C.
9、D
【解析】
主视图是从前向后看,即可得图像.
【详解】
主视图是一个矩形和一个三角形构成.故选D.
10、D
【解析】
分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.
【详解】
A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;
B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;
C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;
D、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D选项正确.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、-1
【解析】
将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.
【详解】
解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,
∴a2-1=2,
∴a=±1,
∵a-1≠2,
∴a≠1,
∴a的值为-1.
故答案为-1.
【点睛】
本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.
12、1.73×1.
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将17.3万用科学记数法表示为1.73×1.
故答案为1.73×1.
【点睛】
本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.
13、m.
【解析】
利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.
【详解】
解:易得扇形的圆心角所对的弦是直径,
∴扇形的半径为: m,
∴扇形的弧长为: =πm,
∴圆锥的底面半径为:π÷2π=m.
【点睛】
本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.
14、20π
【解析】
利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.
【详解】
底面直径为8,底面半径=4,底面周长=8π,
由勾股定理得,母线长==5,
故圆锥的侧面积=×8π×5=20π,
故答案为:20π.
【点睛】
本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.
15、.
【解析】
根据判别式的意义得到,然后解不等式即可.
【详解】
解:关于的一元二次方程有两个不相等的实数根,
,
解得:,
故答案为:.
【点睛】
此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
16、20π
【解析】
解:=20πcm.故答案为20πcm.
17、1
【解析】
根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则DE=2 ,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解
【详解】
解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,
则AB=1﹣4=4,
当直线经过点D,设其交AB于点E,则DE=2 ,作DF⊥AB于点F,
∵y=﹣x于x轴负方向成45°角,且AB∥x轴,
∴∠DEF=45°,
∴DF=EF,
∴在直角三角形DFE中,DF2+EF2=DE2,
∴2DF2=1
∴DF=2,
那么ABCD面积为:AB•DF=4×2=1,
故答案为1.
【点睛】
此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线
三、解答题(共7小题,满分69分)
18、(1);(2)见解析;(3)
【解析】
(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
【详解】
解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴∠BAD=∠CAD,
∵DE⊥AC,
∴∠AFD=90°,
∴∠ADF=∠B,
∴tan∠ADF=tan∠B==;
(2)连接OD,
∵OD=OA,
∴∠ODA=∠OAD,
∵∠OAD=∠CAD,
∴∠CAD=∠ODA,
∴AC∥OD,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(3)设AD=x,则BD=2x,
∴AB=x=10,
∴x=2,
∴AD=2,
同理得:AF=2,DF=4,
∵AF∥OD,
∴△AFE∽△ODE,
∴,
∴=,
∴EF=.
【点睛】
本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
19、详见解析
【解析】
(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
【详解】
解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
(1)设应放入大球m个,小球n个,由题意,得
,解得:.
答:如果要使水面上升到50cm,应放入大球4个,小球6个.
20、(1)∠EAD的余切值为;(2)=.
【解析】
(1)在Rt△ADB中,根据AB=13,cos∠BAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;
(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.
【详解】
(1)∵BD⊥AC,
∴∠ADE=90°,
Rt△ADB中,AB=13,cos∠BAC=,
∴AD=5, 由勾股定理得:BD=12,
∵E是BD的中点,
∴ED=6,
∴∠EAD的余切==;
(2)过D作DG∥AF交BC于G,
∵AC=8,AD=5, ∴CD=3,
∵DG∥AF,
∴=,
设CD=3x,AD=5x,
∵EF∥DG,BE=ED,
∴BF=FG=5x,
∴==.
【点睛】
本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.
21、(1)证明见解析(2)-1
【解析】
(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
【详解】
(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,
即∠EAB=∠FAC,
在△ACF和△ABE中,
△ACF≌△ABE
BE=CF.
(2)∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=.
考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
22、 (1)证明见解析;(2) △APQ是等边三角形.
【解析】
(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;
(2)根据全等三角形的性质得到AP=AQ ,再证∠PAQ = 60°,从而得出△APQ是等边三角形.
【详解】
证明:(1)∵△ABC为等边三角形, ∴AB=AC,∠BAC=60°,
在△ABP和△ACQ中, ∴△ABP≌△ACQ(SAS),
(2)∵△ABP≌△ACQ, ∴∠BAP=∠CAQ,AP=AQ,
∵∠BAP+∠CAP=60°, ∴∠PAQ=∠CAQ+∠CAP=60°,
∴△APQ是等边三角形.
【点睛】
本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.
23、y=x﹣5
【解析】
分析:(1)根据定义,直接变形得到伴生一次函数的解析式;
(2)求出顶点,代入伴生函数解析式即可求解;
(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.
详解:(1)∵二次函数y=(x﹣1)2﹣4,
∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,
故答案为y=x﹣5;
(2)∵二次函数y=(x﹣1)2﹣4,
∴顶点坐标为(1,﹣4),
∵二次函数y=(x﹣1)2﹣4,
∴其伴生一次函数的表达式为y=x﹣5,
∴当x=1时,y=1﹣5=﹣4,
∴(1,﹣4)在直线y=x﹣5上,
即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
(3)∵二次函数y=m(x﹣1)2﹣4m,
∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,
∵P点的横坐标为n,(n>2),
∴P的纵坐标为m(n﹣1)2﹣4m,
即:P(n,m(n﹣1)2﹣4m),
∵PQ∥x轴,
∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),
∴PQ=(n﹣1)2+1﹣n,
∵线段PQ的长为,
∴(n﹣1)2+1﹣n=,
∴n=.
点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.
24、证明见解析.
【解析】
易证△DAC≌△CEF,即可得证.
【详解】
证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,
∴∠DCA=∠CFE,在△DAC和△CEF中:,
∴△DAC≌△CEF(AAS),
∴AD=CE,AC=EF,
∴AE=AD+EF
【点睛】
此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定与性质.
江苏省淮安市淮阴师范院附属中学2023-2024学年数学九上期末学业水平测试试题含答案: 这是一份江苏省淮安市淮阴师范院附属中学2023-2024学年数学九上期末学业水平测试试题含答案,共8页。试卷主要包含了某同学用一根长为,方程的解是,若将抛物线y=2等内容,欢迎下载使用。
2023年江苏省淮安市淮阴区中考数学一模试卷(含解析): 这是一份2023年江苏省淮安市淮阴区中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省淮安市淮阴师范院附属中学2021-2022学年中考冲刺卷数学试题含解析: 这是一份江苏省淮安市淮阴师范院附属中学2021-2022学年中考冲刺卷数学试题含解析,共18页。试卷主要包含了答题时请按要求用笔,按一定规律排列的一列数依次为等内容,欢迎下载使用。