2021-2022学年湖南省涟源市六亩塘中学中考押题数学预测卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2 B.3 C.5 D.7
2.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A. B.1 C. D.
3.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是( )
A.点A B.点B C.点C D.点D
4.下列各式中,正确的是( )
A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.
5.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )
A.10,15 B.13,15 C.13,20 D.15,15
6.如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D.
7.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是 ( )
A. B. C. D.
8.如图,在⊙O中,点P是弦AB的中点,CD是过点P的直径,则下列结论:①AB⊥CD; ②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正确的个数是( )
A.4 B.1 C.2 D.3
9.把多项式ax3﹣2ax2+ax分解因式,结果正确的是( )
A.ax(x2﹣2x) B.ax2(x﹣2)
C.ax(x+1)(x﹣1) D.ax(x﹣1)2
10.二次函数的对称轴是
A.直线 B.直线 C.y轴 D.x轴
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在矩形ABCD中,AB=4,BC=5,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE.延长AF交边BC于点G,则CG为_____.
12.若实数m、n在数轴上的位置如图所示,则(m+n)(m-n)________ 0,(填“>”、“<”或“=”)
13.使分式的值为0,这时x=_____.
14.若一组数据1,2,3,的平均数是2,则的值为______.
15.函数y=中,自变量x的取值范围是_________.
16.在△ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为_____.
17.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.
三、解答题(共7小题,满分69分)
18.(10分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:
车型
目的地
A村(元/辆)
B村(元/辆)
大货车
800
900
小货车
400
600
(1)求这15辆车中大小货车各多少辆?
(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.
(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
19.(5分)如图,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中≌,可知,求得______.如图,在矩形的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.
求证:.
若,求的度数.
20.(8分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
(1)请求出y关于x的函数关系式;
(2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?
(3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?
A
B
成本(元/瓶)
50
35
利润(元/瓶)
20
15
21.(10分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
(1)求二次函数的解析式和该二次函数图象的顶点的坐标.
(2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
22.(10分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。
(1)选中的男主持人为甲班的频率是
(2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)
23.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).
(1)求抛物线的表达式;
(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.
24.(14分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
观点
频数
频率
A
a
0.2
B
12
0.24
C
8
b
D
20
0.4
(1)参加本次讨论的学生共有 人;表中a= ,b= ;
(2)在扇形统计图中,求D所在扇形的圆心角的度数;
(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
2、A
【解析】
【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【详解】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
3、B
【解析】
,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.
【详解】
,
,
,
,
因为0.268<0.732<1.268,
所以 表示的点与点B最接近,
故选B.
4、B
【解析】
A.括号前是负号去括号都变号;
B负次方就是该数次方后的倒数,再根据前面两个负号为正;
C. 两个负号为正;
D.三次根号和二次根号的算法.
【详解】
A选项,﹣(x﹣y)=﹣x+y,故A错误;
B选项, ﹣(﹣2)﹣1=,故B正确;
C选项,﹣,故C错误;
D选项,22,故D错误.
【点睛】
本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键.
5、D
【解析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.
【详解】
将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.
【点睛】
本题考查中位数和众数的概念,熟记概念即可快速解答.
6、D
【解析】
过B点作BD⊥AC,如图,
由勾股定理得,AB=,AD=,
cosA===,
故选D.
7、A
【解析】
根据菱形的判定方法一一判定即可
【详解】
作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意
B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意
C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意
D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意
故选A
【点睛】
本题考查平行四边形的判定,能理解每个图的作法是本题解题关键
8、D
【解析】
根据垂径定理,圆周角的性质定理即可作出判断.
【详解】
∵P是弦AB的中点,CD是过点P的直径.
∴AB⊥CD,弧AD=弧BD,故①正确,③正确;
∠AOB=2∠AOD=4∠ACD,故②正确.
P是OD上的任意一点,因而④不一定正确.
故正确的是:①②③.
故选:D.
【点睛】
本题主要考查了垂径定理,圆周角定理,正确理解定理是关键.平分弦(不是直径)的直径垂直与这条弦,并且平分这条弦所对的两段弧;同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半.
9、D
【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.
【详解】
原式=ax(x2﹣2x+1)=ax(x﹣1)2,
故选D.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
10、C
【解析】
根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.
【详解】
解:二次函数y=x2的对称轴为y轴.
故选:C .
【点睛】
本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
如图,作辅助线,首先证明△EFG≌△ECG,得到FG=CG(设为x ),∠FEG=∠CEG;同理可证AF=AD=5,∠FEA=∠DEA,进而证明△AEG为直角三角形,运用相似三角形的性质即可解决问题.
【详解】
连接EG;
∵四边形ABCD为矩形,
∴∠D=∠C=90°,DC=AB=4;
由题意得:EF=DE=EC=2,∠EFG=∠D=90°;
在Rt△EFG与Rt△ECG中,
,
∴Rt△EFG≌Rt△ECG(HL),
∴FG=CG(设为x ),∠FEG=∠CEG;
同理可证:AF=AD=5,∠FEA=∠DEA,
∴∠AEG=×180°=90°,
而EF⊥AG,可得△EFG∽△AFE,
∴
∴22=5•x,
∴x=,
∴CG=,
故答案为:.
【点睛】
此题考查矩形的性质,翻折变换的性质,以考查全等三角形的性质及其应用、射影定理等几何知识点为核心构造而成;对综合的分析问题解决问题的能力提出了一定的要求.
12、>
【解析】
根据数轴可以确定m、n的大小关系,根据加法以及减法的法则确定m+n以及m−n的符号,可得结果.
【详解】
解:根据题意得:m<1<n,且|m|>|n|,
∴m+n<1,m−n<1,
∴(m+n)(m−n)>1.
故答案为>.
【点睛】
本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.
13、1
【解析】
试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.
答案为1.
考点:分式方程的解法
14、1
【解析】
根据这组数据的平均数是1和平均数的计算公式列式计算即可.
【详解】
∵数据1,1,3,的平均数是1,
∴,
解得:.
故答案为:1.
【点睛】
本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.
15、x≤1且x≠﹣1
【解析】
由二次根式中被开方数为非负数且分母不等于零求解可得结论.
【详解】
根据题意,得:,解得:x≤1且x≠﹣1.
故答案为x≤1且x≠﹣1.
【点睛】
本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(1)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
16、3
【解析】
以AB为边作等边△ABE,由题意可证△AEC≌△ABD,可得BD=CE,根据三角形三边关系,可求EC的最大值,即可求BD的最大值.
【详解】
如图:以AB为边作等边△ABE,
,
∵△ACD,△ABE是等边三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若点E,点B,点C不共线时,EC<BC+BE;
若点E,点B,点C共线时,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值为3,即BD的最大值为3.
故答案是:3
【点睛】
考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键.
17、1
【解析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
【详解】
如图,连接BE,
∵四边形BCEK是正方形,
∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,
∴BF=CF,
根据题意得:AC∥BK,
∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,
∴KO:KF=1:1,
∴KO=OF=CF=BF,
在Rt△PBF中,tan∠BOF==1,
∵∠AOD=∠BOF,
∴tan∠AOD=1.
故答案为1
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
三、解答题(共7小题,满分69分)
18、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.
【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;
(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;
(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.
【详解】
(1)设大货车用x辆,小货车用y辆,根据题意得:
解得:.∴大货车用8辆,小货车用7辆.
(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).
(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,
∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,
最小值为y=100×5+1=9900(元).
答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.
19、阅读发现:90°;(1)证明见解析;(2)100°
【解析】
阅读发现:只要证明,即可证明.
拓展应用:欲证明,只要证明≌即可.
根据即可计算.
【详解】
解:如图中,四边形ABCD是正方形,
,,
≌,
,
,
,
,
,
,
故答案为
为等边三角形,
,.
为等边三角形,
,.
四边形ABCD为矩形,
,.
.
,,
.
在和中,
,
≌.
;
≌,
,
.
【点睛】
本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.
20、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
【解析】
试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
(2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.
(3)列出y与x的关系式,求y的最大值时,x的值.
试题解析:
(1)y=20x+15(600-x) =5x+9000,
∴y关于x的函数关系式为y=5x+9000;
(2)根据题意,得50 x+35(600-x)≥26400,
解得x≥360,
∵y=5x+9000,5>0,
∴y随x的增大而增大,
∴当x=360时,y有最小值为10800,
∴每天至少获利10800元;
(3) ,
∵,∴当x=250时,y有最大值9625,
∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
21、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
【解析】
(1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
【详解】
(1)由题意得:x1+x2=3,x1x2=﹣2m,
x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
解得:m=2,
抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
顶点坐标为(,);
(2)存在,理由:
将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
∴点A、B的坐标为(0,2)、(,),
一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
∴PB==,
AP==2
过点B作BM⊥AB交x轴于点M,
∵∠MBP=∠AOP=90°,∠MPB=∠APO,
∴△APO∽△MPB,
∴ ,∴ ,
∴MP=,
∴OM=OP﹣MP=6﹣=,
∴点M(,0).
【点睛】
本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
22、 (1) (2) ,图形见解析.
【解析】
(1)根据概率的定义即可求出;
(2)先根据题意列出树状图,再利用概率公式进行求解.
【详解】
(1)由题意P(选中的男主持人为甲班)=
(2)列出树状图如下
∴P(选中的男女主持人均为甲班的)=
【点睛】
此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.
23、 (1) y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).
【解析】
(1)将点B坐标代入解析式求得a的值即可得;
(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得=
==,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;
(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.
【详解】
解:(1)把点B(-,2)代入y=a(x-)2-2,
解得a=1,
∴抛物线的表达式为y=(x-)2-2,
(2)由y=(x-)2-2知A(,-2),
设直线AB表达式为y=kx+b,代入点A,B的坐标得,
解得,
∴直线AB的表达式为y=-2x-1,
易求E(0,-1),F(0,-),M(-,0),
若∠OPM=∠MAF,
∴OP∥AF,
∴△OPE∽△FAE,
∴,
∴OP=FA= ,
设点P(t,-2t-1),则,
解得t1=-,t2=-,
由对称性知,当t1=-时,也满足∠OPM=∠MAF,
∴t1=-,t2=-都满足条件,
∵△POE的面积=OE·|t|,
∴△POE的面积为或;
(3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,
设Q(a,-2a-1),则NE=-a,QN=-2a.
由翻折知QN′=QN=-2a,N′E=NE=-a,
由∠QN′E=∠N=90°易知△QRN′∽△N′SE,
∴==,即===2,
∴QR=2,ES= ,
由NE+ES=NS=QR可得-a+=2,
解得a=-,
∴Q(-,),
如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
设NE=a,则N′E=a.
易知RN′=2,SN′=1,QN′=QN=3,
∴QR=,SE=-a.
在Rt△SEN′中,(-a)2+12=a2,
解得a=,
∴Q(-,2),
如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.
设NE=a,则N′E=a.
易知RN′=2,SN′=1,QN′=QN=3,
∴QR=,SE=-a.
在Rt△SEN′中,(-a)2+12=a2,
解得a=,
∴Q(,2).
综上,点Q的坐标为(-,)或(-,2)或(,2).
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.
24、(1)50、10、0.16;(2)144°;(3).
【解析】
(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,
(2)用360°乘以D观点的频率即可得;
(3)画出树状图,然后根据概率公式列式计算即可得解
【详解】
解:(1)参加本次讨论的学生共有12÷0.24=50,
则a=50×0.2=10,b=8÷50=0.16,
故答案为50、10、0.16;
(2)D所在扇形的圆心角的度数为360°×0.4=144°;
(3)根据题意画出树状图如下:
由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,
所以选中观点D(合理竞争,合作双赢)的概率为.
【点睛】
此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
湖南省湘潭市名校2021-2022学年中考押题数学预测卷含解析: 这是一份湖南省湘潭市名校2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了已知x+=3,则x2+=,把a•的根号外的a移到根号内得等内容,欢迎下载使用。
湖南省株洲市攸县2021-2022学年中考押题数学预测卷含解析: 这是一份湖南省株洲市攸县2021-2022学年中考押题数学预测卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列命题是真命题的是等内容,欢迎下载使用。
2022届湖南省涟源市重点达标名校中考数学押题卷含解析: 这是一份2022届湖南省涟源市重点达标名校中考数学押题卷含解析,共16页。试卷主要包含了-2的倒数是等内容,欢迎下载使用。