


2021-2022学年湖南省娄底市涟源市市级名校中考数学仿真试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若关于x的不等式组恰有3个整数解,则字母a的取值范围是( )
A.a≤﹣1 B.﹣2≤a<﹣1 C.a<﹣1 D.﹣2<a≤﹣1
2.如图,已知直线 PQ⊥MN 于点 O,点 A,B 分别在 MN,PQ 上,OA=1,OB=2,在直线 MN 或直线 PQ 上找一点 C,使△ABC是等腰三角形,则这样的 C 点有( )
A.3 个 B.4 个 C.7 个 D.8 个
3.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )
A.10π B.15π C.20π D.30π
4.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )
A.5 B.7 C.9 D.11
5.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是( )
A.①② B.②③ C.①④ D.③④
6.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )
A.13 B.14 C.15 D.16
7.下列各数3.1415926,,,,,中,无理数有( )
A.2个 B.3个 C.4个 D.5个
8.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是( )
A.70° B.44° C.34° D.24°
9.二次函数y=-x2-4x+5的最大值是( )
A.-7 B.5 C.0 D.9
10.如图是一个几何体的三视图,则这个几何体是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为 .
13.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.请根据上述的定义解决问题:若不等式3※x<1,则不等式的正整数解是_____.
14.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)
15.如果将抛物线平移,使平移后的抛物线顶点坐标为,那么所得新抛物线的表达式是__________.
16.下列说法正确的是_____.(请直接填写序号)
①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
17.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.
三、解答题(共7小题,满分69分)
18.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)△ABC的面积等于_____;
(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.
19.(5分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
评估成绩n(分)
评定等级
频数
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根据以上信息解答下列问题:
(1)求m的值;
(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.
20.(8分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=2,CD=1,求FE的长.
21.(10分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
22.(10分)如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
23.(12分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
24.(14分)如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D点的坐标;二次函数的对称轴上是否存在一点C,使得△CBD的周长最小?若C点存在,求出C点的坐标;若C点不存在,请说明理由.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.
【详解】
解:∵x的不等式组恰有3个整数解,
∴整数解为1,0,-1,
∴-2≤a<-1.
故选B.
【点睛】
本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.
2、D
【解析】
试题分析:根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.
解:使△ABC是等腰三角形,
当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.
当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.
当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.
所以共8个.
故选D.
点评:本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.
3、B
【解析】
由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
∴圆锥的侧面积=lr=×6π×5=15π,故选B
4、B
【解析】
试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
5、B
【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
【详解】
解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
将A(1,2)代入y=ax2+bx,则2=9a+1b
∴b=,
∴a﹣b=a﹣()=4a﹣>-,故②正确;
由正弦定义sinα=,则③正确;
不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
则满足条件x范围为x≥1或x≤0,则④错误.
故答案为:B.
【点睛】
二次函数的图像,sinα公式,不等式的解集.
6、C
【解析】
解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I.
因为六边形ABCDEF的六个角都是120°,
所以六边形ABCDEF的每一个外角的度数都是60°.
所以都是等边三角形.
所以
所以六边形的周长为3+1+4+2+2+3=15;
故选C.
7、B
【解析】
根据无理数的定义即可判定求解.
【详解】
在3.1415926,,,,,中,
,3.1415926,是有理数,
,,是无理数,共有3个,
故选:B.
【点睛】
本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
8、C
【解析】
易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
【详解】
∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选C.
【点睛】
本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
9、D
【解析】
直接利用配方法得出二次函数的顶点式进而得出答案.
【详解】
y=﹣x2﹣4x+5=﹣(x+2)2+9,
即二次函数y=﹣x2﹣4x+5的最大值是9,
故选D.
【点睛】
此题主要考查了二次函数的最值,正确配方是解题关键.
10、B
【解析】
试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
考点:由三视图判断几何体.
二、填空题(共7小题,每小题3分,满分21分)
11、2.
【解析】
把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
【详解】
解:∵m是方程2x2﹣3x﹣2=0的一个根,
∴代入得:2m2﹣3m﹣2=0,
∴2m2﹣3m=2,
∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
故答案为:2.
【点睛】
本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
12、1.
【解析】
∵AB=5,AD=12,
∴根据矩形的性质和勾股定理,得AC=13.
∵BO为Rt△ABC斜边上的中线
∴BO=6.5
∵O是AC的中点,M是AD的中点,
∴OM是△ACD的中位线
∴OM=2.5
∴四边形ABOM的周长为:6.5+2.5+6+5=1
故答案为1
13、2
【解析】
【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.
【详解】∵3※x=3x﹣3+x﹣2<2,
∴x<,
∵x为正整数,
∴x=2,
故答案为:2.
【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.
14、6.2
【解析】
根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.
【详解】
解:在Rt△ABC中,
∵∠ACB=90°,
∴BC=AB•sin∠BAC=12×0.515≈6.2(米),
答:大厅两层之间的距离BC的长约为6.2米.
故答案为:6.2.
【点睛】
本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.
15、.
【解析】
平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.
【详解】
∵原抛物线解析式为y=1x1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x﹣1)1+1.
故答案为:y=1(x﹣1)1+1.
【点睛】
本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.
16、②④⑤
【解析】
根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
【详解】
①“若a>b,当c<0时,则<,故①是假命题;
②六边形的内角和是其外角和的2倍,根据②真命题;
③函数y=的自变量的取值范围是x≥﹣1且x≠0,故③是假命题;
④三角形的中位线平行于第三边,并且等于第三边的一半,故④是真命题;
⑤正方形既是轴对称图形,又是中心对称图形,故⑤是真命题;
故答案为②④⑤
【点睛】
本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.
17、5
【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
【详解】
解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R-2)2,
解得R=5,
∴该光盘的半径是5cm.
故答案为5
【点睛】
此题考查了切线的性质及垂径定理,建立数学模型是关键.
三、解答题(共7小题,满分69分)
18、6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G
【解析】
(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.
【详解】
解:(1)4×3÷2=6,故△ABC的面积等于6.
(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG即为所求正方形.
故答案为:6,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G.
【点睛】
本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.
19、(1)25;(2)8°48′;(3).
【解析】
试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
试题解析:(1)∵C等级频数为15,占60%,
∴m=15÷60%=25;
(2)∵B等级频数为:25﹣2﹣15﹣6=2,
∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
(3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:
∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
∴其中至少有一家是A等级的概率为:=.
考点:频数(率)分布表;扇形统计图;列表法与树状图法.
20、(1)见解析;(2)EF=.
【解析】
(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;
(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.
【详解】
(1)∵∠BAC=90°,∠EAD=45°,
∴∠BAE+∠DAC=45°,
∵将△ADC绕点A顺时针旋转90°,得到△AFB,
∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,
∴∠BAF+∠BAE=45°=∠FAE,
∴∠FAE=∠DAE,AD=AF,AE=AE,
∴△AEF≌△AED(SAS),
∴DE=EF
(2)∵AB=AC=2,∠BAC=90°,
∴BC=4,
∵CD=1,
∴BF=1,BD=3,即BE+DE=3,
∵∠ABF=∠ABC=45°,
∴∠EBF=90°,
∴BF2+BE2=EF2,
∴1+(3﹣EF)2=EF2,
∴EF=
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.
21、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【解析】
(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
(3)分两种情形列出方程即可解决问题.
【详解】
解:(1)根据图象信息:货车的速度V货=,
∵轿车到达乙地的时间为货车出发后4.5小时,
∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
此时,货车距乙地的路程为:300﹣270=30(千米).
所以轿车到达乙地后,货车距乙地30千米.
故答案为30;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
,解得,
∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
易得OA:y=60x,
,解得,
∴当x=3.9时,轿车与货车相遇;
(3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
解得x=3.5或4.3小时.
答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【点睛】
本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
22、(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;
(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
∴B(3,0),C(0,3),
把B、C坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线对称轴为x=2,P(2,﹣1),
设M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM为等腰三角形,
∴有MC=MP、MC=PC和MP=PC三种情况,
①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);
综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,
∴当x=时,△CBE的面积最大,此时E点坐标为(,),
即当E点坐标为(,)时,△CBE的面积最大.
考点:二次函数综合题.
23、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
【解析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;
(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
【详解】
(1)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=25,x2=35,
答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
∵a=﹣2,
∴抛物线开口向下,当x<30时,y随x的增大而增大,
又由于这种农产品的销售价不高于每千克28元
∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
【点睛】
此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
24、(1)y=x1﹣4x+6;(1)D点的坐标为(6,0);(3)存在.当点C的坐标为(4,1)时,△CBD的周长最小
【解析】
(1)只需运用待定系数法就可求出二次函数的解析式;
(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D的坐标;
(3)连接CA,由于BD是定值,使得△CBD的周长最小,只需CD+CB最小,根据抛物线是轴对称图形可得CA=CD,只需CA+CB最小,根据“两点之间,线段最短”可得:当点A、C、B三点共线时,CA+CB最小,只需用待定系数法求出直线AB的解析式,就可得到点C的坐标.
【详解】
(1)把A(1,0),B(8,6)代入,得
解得:
∴二次函数的解析式为;
(1)由,得
二次函数图象的顶点坐标为(4,﹣1).
令y=0,得,
解得:x1=1,x1=6,
∴D点的坐标为(6,0);
(3)二次函数的对称轴上存在一点C,使得的周长最小.
连接CA,如图,
∵点C在二次函数的对称轴x=4上,
∴xC=4,CA=CD,
∴的周长=CD+CB+BD=CA+CB+BD,
根据“两点之间,线段最短”,可得
当点A、C、B三点共线时,CA+CB最小,
此时,由于BD是定值,因此的周长最小.
设直线AB的解析式为y=mx+n,
把A(1,0)、B(8,6)代入y=mx+n,得
解得:
∴直线AB的解析式为y=x﹣1.
当x=4时,y=4﹣1=1,
∴当二次函数的对称轴上点C的坐标为(4,1)时,的周长最小.
【点睛】
本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.
江西省会昌县市级名校2021-2022学年中考数学仿真试卷含解析: 这是一份江西省会昌县市级名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,若关于x的一元二次方程等内容,欢迎下载使用。
江西省抚州市南城县市级名校2021-2022学年中考数学仿真试卷含解析: 这是一份江西省抚州市南城县市级名校2021-2022学年中考数学仿真试卷含解析,共21页。试卷主要包含了直线y=3x+1不经过的象限是等内容,欢迎下载使用。
广西南宁中学春季学期市级名校2021-2022学年中考数学仿真试卷含解析: 这是一份广西南宁中学春季学期市级名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。