2021-2022学年黑龙江省牡丹江市达标名校中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
2.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
节约用水量(单位:吨) | 1 | 1.1 | 1.4 | 1 | 1.5 |
家庭数 | 4 | 6 | 5 | 3 | 1 |
这组数据的中位数和众数分别是( )
A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
3.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是( )
A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0
4.﹣22×3的结果是( )
A.﹣5 B.﹣12 C.﹣6 D.12
5.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )
A. B.
C. D.
6.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于( )
A.40° B.45° C.50° D.60°
7.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
8.若不等式组的整数解共有三个,则a的取值范围是( )
A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6
9.如图是小明在物理实验课上用量筒和水测量铁块A的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h与铁块被提起的时间t之间的函数关系的大致图象是( )
A. B. C. D.
10.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元 B.100元 C.80元 D.60元
二、填空题(共7小题,每小题3分,满分21分)
11.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
12.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________度.
13.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
如果设水深为x尺,则芦苇长用含x的代数式可表示为 尺,根据题意列方程为 .
14.已知点A(2,4)与点B(b﹣1,2a)关于原点对称,则ab=_____.
15.一个凸多边形的内角和与外角和相等,它是______边形.
16.分解因式:________.
17.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.
三、解答题(共7小题,满分69分)
18.(10分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时?
19.(5分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
20.(8分)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.
21.(10分)如图,抛物线交X轴于A、B两点,交Y轴于点C ,.
(1)求抛物线的解析式;
(2)平面内是否存在一点P,使以A,B,C,P为顶点的四边形为平行四边形,若存在直接写出P的坐标,若不存在请说明理由。
22.(10分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
23.(12分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程?若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
24.(14分)解方程
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.
【详解】
解:A. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
B. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;
C. ∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;
D. ∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.
故选:D.
【点睛】
本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.
2、D
【解析】
分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
详解:这组数据的中位数是;
这组数据的众数是1.1.
故选D.
点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
3、C
【解析】
利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.
【详解】
解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,
∴a+b<1,ab<1,a﹣b<1,a÷b<1.
故选:C.
4、B
【解析】
先算乘方,再算乘法即可.
【详解】
解:﹣22×3=﹣4×3=﹣1.
故选:B.
【点睛】
本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.
5、B
【解析】
分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.
详解:设早上葡萄的价格是 x 元/千克,由题意得,
.
故选B.
点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.
6、C
【解析】
分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得∠C的度数.
详解:∵AB∥CD,
∴
∵
∴
故选C.
点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.
7、A
【解析】
根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
【详解】
∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
∴AB=BD , AC=CD ,
∵AB=AC ,
∴AB=BD=CD=AC ,
∴ 四边形 ABDC 是菱形;
故选A.
【点睛】
本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
8、C
【解析】
首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【详解】
解不等式组得:2<x≤a,
∵不等式组的整数解共有3个,
∴这3个是3,4,5,因而5≤a<1.
故选C.
【点睛】
本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
9、B
【解析】
根据题意,在实验中有3个阶段,
①、铁块在液面以下,液面得高度不变;
②、铁块的一部分露出液面,但未完全露出时,液面高度降低;
③、铁块在液面以上,完全露出时,液面高度又维持不变;
分析可得,B符合描述;
故选B.
10、C
【解析】
解:设该商品的进价为x元/件,
依题意得:(x+20)÷=200,解得:x=1.
∴该商品的进价为1元/件.
故选C.
二、填空题(共7小题,每小题3分,满分21分)
11、.
【解析】
试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
【点睛】
本题考查概率公式,掌握图形特点是解题关键,难度不大.
12、22.5°
【解析】
四边形ABCD是矩形,
AC=BD,OA=OC,OB=OD,
OA=OB═OC,
∠OAD=∠ODA,∠OAB=∠OBA,
∠AOE=∠OAD+∠ODA=2∠OAD,
∠EAC=2∠CAD,
∠EAO=∠AOE,
AE⊥BD,
∠AEO=90°,
∠AOE=45°,
∠OAB=∠OBA=67.5°,
即∠BAE=∠OAB﹣∠OAE=22.5°.
考点:矩形的性质;等腰三角形的性质.
13、(x+1);.
【解析】
试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.
故答案为(x+1),.
考点:由实际问题抽象出一元二次方程;勾股定理的应用.
14、1.
【解析】
由题意,得
b−1=−1,1a=−4,
解得b=−1,a=−1,
∴ab=(−1) ×(−1)=1,
故答案为1.
15、四
【解析】
任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:设边数为n,根据题意,得
(n-2)•180=360,
解得n=4,则它是四边形.
故填:四.
【点睛】
此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.
16、 (a+1)(a-1)
【解析】
根据平方差公式分解即可.
【详解】
(a+1)(a-1).
故答案为:(a+1)(a-1).
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
17、
【解析】
解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,
过点M作MF⊥DC于点F,
∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,
∴2MD=AD=CD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD=MD=1,
∴FM=DM×cos30°=,
∴,
∴A′C=MC﹣MA′=.
故答案为.
【点评】
此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.
三、解答题(共7小题,满分69分)
18、(1)y1=4x,y2=-5x+1.(2)km.(3)h.
【解析】
(1)由图象直接写出函数关系式;
(2)若相遇,甲乙走的总路程之和等于两地的距离.
【详解】
(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,
乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.
(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,
设甲、乙两班学生出发后,x小时相遇,则
4x+5x=1,
解得x=.
当x=时,y2=−5×+1=,
∴相遇时乙班离A地为km.
(3)甲、乙两班首次相距4千米,
即两班走的路程之和为6km,
故4x+5x=6,
解得x=h.
∴甲、乙两班首次相距4千米时所用时间是h.
19、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
【解析】
(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
【详解】
证明:如图①
是的中线,
(或证明四边形ABDE是平行四边形,从而得到)
【探究】
四边形ABPE是平行四边形.
方法一:如图②,
证明:过点D作交直线于点,
∴四边形是平行四边形,
∵由问题结论可得
∴四边形是平行四边形.
方法二:如图③,
证明:延长BP交直线CF于点N,
∵是的中线,
∴四边形是平行四边形.
【应用】
如图④,延长BP交CF于H.
由上面可知,四边形是平行四边形,
∴四边形APHE是平行四边形,
,
【点睛】
此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
20、证明见解析.
【解析】
由AD∥BC得∠ADB=∠DBC,根据已知证明△AED≌△DCB(AAS),即可解题.
【详解】
解:∵AD∥BC
∴∠ADB=∠DBC
∵DC⊥BC于点C,AE⊥BD于点E
∴∠C=∠AED=90°
又∵DB=DA
∴△AED≌△DCB(AAS)
∴AE=CD
【点睛】
本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.
21、(1);(2) (3,-4) 或(5,4)或(-5,4)
【解析】
(1)设|OA|=1,确定A,B,C三点坐标,然后用待定系数法即可完成;
(2)先画出存在的点,然后通过平移和计算确定坐标;
【详解】
解:(1)设|OA|=1,则A(-1,0),B(4,0)C(0,4)
设抛物线的解析式为y=ax2+bx+c
则有: 解得
所以函数解析式为:
(2)存在,(3,-4) 或(5,4)或(-5,4)
理由如下:如图:
P1相当于C点向右平移了5个单位长度,则坐标为(5,4);
P2相当于C点向左平移了5个单位长度,则坐标为(-5,4);
设P3坐标为(m,n)在第四象限,要使A P3BC是平行四边形,
则有A P3=BC, B P3=AC
∴ 即 (舍去)
P3坐标为(3,-4)
【点睛】
本题主要考查了二次函数综合题,此题涉及到待定系数法求二次函数解析式,通过作图确认平行四边形存在,然后通过观察和计算确定P点坐标;解题的关键在于规范作图,以便于树形结合.
22、(1);(2)x>1;(3)P(﹣,0)或(,0)
【解析】
分析:(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间的函数关系式;
(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;
(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.
详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,
∴A(1,3),
把A(1,3)代入双曲线y=,可得k=1×3=3,
∴y与x之间的函数关系式为:y=;
(2)∵A(1,3),
∴当x>0时,不等式x+b>的解集为:x>1;
(3)y1=﹣x+4,令y=0,则x=4,
∴点B的坐标为(4,0),
把A(1,3)代入y2=x+b,可得3=+b,
∴b=,
∴y2=x+,
令y2=0,则x=﹣3,即C(﹣3,0),
∴BC=7,
∵AP把△ABC的面积分成1:3两部分,
∴CP=BC=,或BP=BC=
∴OP=3﹣=,或OP=4﹣=,
∴P(﹣,0)或(,0).
点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
23、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.
【解析】
(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;
(2)设乙队施工y天完成该项工程,根据题意列不等式解不等式即可.
【详解】
(1)由题意知,甲队单独施工完成该项工程所需时间为1÷=90(天).
设乙队单独施工需要x天完成该项工程,则
,
去分母,得x+1=2x.
解得x=1.
经检验x=1是原方程的解.
答:乙队单独施工需要1天完成.
(2)设乙队施工y天完成该项工程,则
1-
解得y≥2.
答:乙队至少施工l8天才能完成该项工程.
24、x=-1.
【解析】
解:方程两边同乘x-2,得2x=x-2+1
解这个方程,得x= -1
检验:x= -1时,x-2≠0
∴原方程的解是x= -1
首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解
黑龙江省明水县达标名校2021-2022学年中考数学最后一模试卷含解析: 这是一份黑龙江省明水县达标名校2021-2022学年中考数学最后一模试卷含解析,共25页。试卷主要包含了考生要认真填写考场号和座位序号,估计﹣2的值应该在,已知,则的值是,计算4×的结果等于等内容,欢迎下载使用。
黑龙江省黑河北安市达标名校2021-2022学年中考数学最后一模试卷含解析: 这是一份黑龙江省黑河北安市达标名校2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是,如图,已知,,则的度数为等内容,欢迎下载使用。
2021-2022学年扬州市达标名校中考数学最后一模试卷含解析: 这是一份2021-2022学年扬州市达标名校中考数学最后一模试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法等内容,欢迎下载使用。