2021-2022学年湖北省荆州松滋市中考数学押题卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.如图,点C是直线AB,DE之间的一点,∠ACD=90°,下列条件能使得AB∥DE的是( )
A.∠α+∠β=180° B.∠β﹣∠α=90° C.∠β=3∠α D.∠α+∠β=90°
2.已知抛物线y=ax2+bx+c的图象如图所示,顶点为(4,6),则下列说法错误的是( )
A.b2>4ac B.ax2+bx+c≤6
C.若点(2,m)(5,n)在抛物线上,则m>n D.8a+b=0
3.下列各式正确的是( )
A. B.
C. D.
4.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )
A.12 B.11 C.10 D.9
5.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
尺码/cm
21.5
22.0
22.5
23.0
23.5
人数
2
4
3
8
3
学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是( )
A.平均数 B.加权平均数 C.众数 D.中位数
6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是( )
A.60° B.50° C.40° D.30°
7.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是( )
A.y=(x﹣2)2+1 B.y=(x+2)2+1
C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
8.下列式子中,与互为有理化因式的是( )
A. B. C. D.
9.在下面的四个几何体中,左视图与主视图不相同的几何体是( )
A. B. C. D.
10.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC相似,则点F应是G,H,M,N四点中的( )
A.H或N B.G或H C.M或N D.G或M
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)
12.在中,::1:2:3,于点D,若,则______
13.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg
14.如图,点 A、B、C 在⊙O 上,⊙O 半径为 1cm,∠ACB=30°,则的长是________.
15.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.
16.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.
三、解答题(共8题,共72分)
17.(8分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)
(1)判断点M是否在直线y=﹣x+4上,并说明理由;
(2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;
(3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.
18.(8分)如图,以△ABC的一边AB为直径作⊙O, ⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.
(1) 求证:DE⊥AC;
(2) 连结OC交DE于点F,若,求的值.
19.(8分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:
(1)利用刻度尺在∠AOB的两边OA,OB上分别取OM=ON;
(2)利用两个三角板,分别过点M,N画OM,ON的垂线,交点为P;
(3)画射线OP.
则射线OP为∠AOB的平分线.请写出小林的画法的依据______.
20.(8分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.
(1)求抛物线解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MOA的面积为S.求S关于m的函数关系式,并求出当m为何值时,S有最大值,这个最大值是多少?
(3)若点Q是直线y=﹣x上的动点,过Q做y轴的平行线交抛物线于点P,判断有几个Q能使以点P,Q,B,O为顶点的四边形是平行四边形的点,直接写出相应的点Q的坐标.
21.(8分)解方程:(x﹣3)(x﹣2)﹣4=1.
22.(10分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为 ;若点D的坐标为(4,n).
①求反比例函数y=的表达式;
②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.
23.(12分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
24.如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.
(1)求⊙O的半径长;
(2)求线段DG的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
延长AC交DE于点F,根据所给条件如果能推出∠α=∠1,则能使得AB∥DE,否则不能使得AB∥DE;
【详解】
延长AC交DE于点F.
A. ∵∠α+∠β=180°,∠β=∠1+90°,
∴∠α=90°-∠1,即∠α≠∠1,
∴不能使得AB∥DE;
B. ∵∠β﹣∠α=90°,∠β=∠1+90°,
∴∠α=∠1,
∴能使得AB∥DE;
C.∵∠β=3∠α,∠β=∠1+90°,
∴3∠α=90°+∠1,即∠α≠∠1,
∴不能使得AB∥DE;
D.∵∠α+∠β=90°,∠β=∠1+90°,
∴∠α=-∠1,即∠α≠∠1,
∴不能使得AB∥DE;
故选B.
【点睛】
本题考查了平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.
2、C
【解析】
观察可得,抛物线与x轴有两个交点,可得 ,即 ,选项A正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即,选项B正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m
3、A
【解析】
∵,则B错;,则C;,则D错,故选A.
4、A
【解析】
根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.
【详解】
∵一个正多边形的每个内角为150°,
∴这个正多边形的每个外角=180°﹣150°=30°,
∴这个正多边形的边数==1.
故选:A.
【点睛】
本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.
5、C
【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
6、C
【解析】
试题分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.
考点:平行线的性质.
7、C
【解析】
试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
考点:二次函数的顶点式、对称轴
点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
8、B
【解析】
直接利用有理化因式的定义分析得出答案.
【详解】
∵()(,)
=12﹣2,
=10,
∴与互为有理化因式的是:,
故选B.
【点睛】
本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
9、B
【解析】
由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.
【详解】
A、正方体的左视图与主视图都是正方形,故A选项不合题意;
B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;
C、球的左视图与主视图都是圆,故C选项不合题意;
D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;
故选B.
【点睛】
本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.
10、C
【解析】
根据两三角形三条边对应成比例,两三角形相似进行解答
【详解】
设小正方形的边长为1,则△ABC的各边分别为3、、,只能F是M或N时,其各边是6、2,2.与△ABC各边对应成比例,故选C
【点睛】
本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键
二、填空题(本大题共6个小题,每小题3分,共18分)
11、①②③
【解析】
(1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG=S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.
【详解】
(1)∵四边形ABCD是菱形,BD=AB,
∴AB=BD=BC=DC=DA,
∴△ABD和△CBD都是等边三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,
∴△AED≌△DFB,即结论①正确;
(2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,
∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
∴点B、C、D、G四点共圆,
∴∠CDN=∠CBM,
如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,
∴∠CDN=∠CBM=90°,
又∵CB=CD,
∴△CBM≌△CDN,
∴S四边形BCDG=S四边形CMGN=2S△CGN,
∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
∴GN=CG,CN=CG,
∴S△CGN=CG2,
∴S四边形BCDG=2S△CGN,=CG2,即结论②是正确的;
(3)如下图,过点F作FK∥AB交DE于点K,
∴△DFK∽△DAE,△GFK∽△GBE,
∴,,
∵AF=2DF,
∴,
∵AB=AD,AE=DF,AF=2DF,
∴BE=2AE,
∴,
∴BG=6FG,即结论③成立.
综上所述,本题中正确的结论是:
故答案为①②③
点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.
12、2.1
【解析】
先求出△ABC是∠A等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解.
【详解】
解:根据题意,设∠A、∠B、∠C为k、2k、3k,
则k+2k+3k=180°,
解得k=30°,
2k=60°,
3k=90°,
∵AB=10,
∴BC=AB=1,
∵CD⊥AB,
∴∠BCD=∠A=30°,
∴BD=BC=2.1.
故答案为2.1.
【点睛】
本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC是直角三角形是解本题的关键.
13、20
【解析】
设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg
14、.
【解析】
根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.
【详解】
∵∠ACB=30°,
∴∠AOB=60°,
∵OA=1cm,
∴的长=cm.
故答案为:.
【点睛】
本题考查了弧长的计算以及圆周角定理,解题关键是掌握弧长公式l=.
15、1≤x≤1
【解析】
此题需要运用极端原理求解;①BP最小时,F、D重合,由折叠的性质知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;
【详解】
解:如图:①当F、D重合时,BP的值最小;
根据折叠的性质知:AF=PF=5;
在Rt△PFC中,PF=5,FC=1,则PC=4;
∴BP=xmin=1;
②当E、B重合时,BP的值最大;
由折叠的性质可得BP=AB=1.
所以BP的取值范围是:1≤x≤1.
故答案为:1≤x≤1.
【点睛】
此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.
16、(,),(-4,-5)
【解析】
求出点A、B、C的坐标,当D在x轴下方时,设直线CD与x轴交于点E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,从而可求出E的坐标,再求出CE的直线解析式,联立抛物线即可求出D的坐标,再由对称性即可求出D在x轴上方时的坐标.
【详解】
令y=0代入y=-x2-2x+3,
∴x=-3或x=1,
∴OA=1,OB=3,
令x=0代入y=-x2-2x+3,
∴y=3,
∴OC=3,
当点D在x轴下方时,
∴设直线CD与x轴交于点E,过点E作EG⊥CB于点G,
∵OB=OC,
∴∠CBO=45°,
∴BG=EG,OB=OC=3,
∴由勾股定理可知:BC=3,
设EG=x,
∴CG=3-x,
∵∠DCB=∠ACO.
∴tan∠DCB=tan∠ACO=,
∴,
∴x=,
∴BE=x=,
∴OE=OB-BE=,
∴E(-,0),
设CE的解析式为y=mx+n,交抛物线于点D2,
把C(0,3)和E(-,0)代入y=mx+n,
∴,解得:.
∴直线CE的解析式为:y=2x+3,
联立
解得:x=-4或x=0,
∴D2的坐标为(-4,-5)
设点E关于BC的对称点为F,
连接FB,
∴∠FBC=45°,
∴FB⊥OB,
∴FB=BE=,
∴F(-3,)
设CF的解析式为y=ax+b,
把C(0,3)和(-3,)代入y=ax+b
解得:,
∴直线CF的解析式为:y=x+3,
联立
解得:x=0或x=-
∴D1的坐标为(-,)
故答案为(-,)或(-4,-5)
【点睛】
本题考查二次函数的综合问题,解题的关键是根据对称性求出相关点的坐标,利用直线解析式以及抛物线的解析式即可求出点D的坐标.
三、解答题(共8题,共72分)
17、(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.
【解析】
(1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;
(2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;
(1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=.根据y=kx+b随x的增大而增大,得到k>0,即>0,那么①,或②,分别解不等式组即可求出n的取值范围.
【详解】
(1)点M不在直线y=﹣x+4上,理由如下:
∵当x=1时,y=﹣1+4=1≠2,
∴点M(1,2)不在直线y=﹣x+4上;
(2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.
①点M(1,2)关于x轴的对称点为点M1(1,﹣2),
∵点M1(1,﹣2)在直线y=﹣x+4+b上,
∴﹣2=﹣1+4+b,
∴b=﹣1,
即平移的距离为1;
②点M(1,2)关于y轴的对称点为点M2(﹣1,2),
∵点M2(﹣1,2)在直线y=﹣x+4+b上,
∴2=1+4+b,
∴b=﹣2,
即平移的距离为2.
综上所述,平移的距离为1或2;
(1)∵直线y=kx+b经过点M(1,2),
∴2=1k+b,b=2﹣1k.
∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,
∴y=kn+b=﹣n+4,
∴kn+2﹣1k=﹣n+4,
∴k=.
∵y=kx+b随x的增大而增大,
∴k>0,即>0,
∴①,或②,
不等式组①无解,不等式组②的解集为2<n<1.
∴n的取值范围是2<n<1.
故答案为2<n<1.
【点睛】
本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.
18、(1)证明见解析(2)
【解析】
(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.
(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.
【详解】
解:(1)连接OD . ∵DE是⊙O的切线,
∴DE⊥OD,即∠ODE=90° .
∵AB是⊙O的直径,
∴O是AB的中点.
又∵D是BC的中点, .
∴OD∥AC .
∴∠DEC=∠ODE= 90° .
∴DE⊥AC .
(2)连接AD . ∵OD∥AC,
∴.
∵AB为⊙O的直径, ∴∠ADB= ∠ADC =90° .
又∵D为BC的中点,
∴AB=AC.
∵sin∠ABC==,
设AD= 3x , 则AB=AC=4x, OD= 2x.
∵DE⊥AC, ∴∠ADC= ∠AED= 90°.
∵∠DAC= ∠EAD, ∴△ADC∽△AED.
∴.
∴.
∴. ∴.
∴.
19、斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线
【解析】
利用“HL”判断Rt△OPM≌Rt△OPN,从而得到∠POM=∠PON.
【详解】
有画法得OM=ON,∠OMP=∠ONP=90°,则可判定Rt△OPM≌Rt△OPN,
所以∠POM=∠PON,
即射线OP为∠AOB的平分线.
故答案为斜边和一条直角边分别相等的两个直角三角形全等;全等三角形的对应角相等;两点确定一条直线.
【点睛】
本题考查了作图−基本作图,解题关键在于熟练掌握基本作图作一条线段等于已知线段.
20、(1)y=x2+x﹣4;(2)S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;(3)Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
【解析】
(1)设抛物线解析式为y= ax2 + bx + c,然后把点A、B、C的坐标代入函数解析式,利用待定系数法求解即可;
(2)利用抛物线的解析式表示出点M的纵坐标,从而得到点M到x轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;
(3)利用直线与抛物线的解析式表示出点P、Q的坐标,然后求出PQ的长度,再根据平行四边形的对边相等列出算式,然后解关于x的一元二次方程即可得解.
【详解】
解:(1)设抛物线解析式为y=ax2+bx+c,
∵抛物线经过A(﹣4,0),B(0,﹣4),C(2,0),
∴,
解得,
∴抛物线解析式为y=x2+x﹣4;
(2)∵点M的横坐标为m,
∴点M的纵坐标为m2+m﹣4,
又∵A(﹣4,0),
∴AO=0﹣(﹣4)=4,
∴S=×4×|m2+m﹣4|=﹣(m2+2m﹣8)=﹣m2﹣2m+8,
∵S=﹣(m2+2m﹣8)=﹣(m+1)2+9,点M为第三象限内抛物线上一动点,
∴当m=﹣1时,S有最大值,最大值为S=9;
故答案为S关于m的函数关系式为S=﹣m2﹣2m+8,当m=﹣1时,S有最大值9;
(3)∵点Q是直线y=﹣x上的动点,
∴设点Q的坐标为(a,﹣a),
∵点P在抛物线上,且PQ∥y轴,
∴点P的坐标为(a,a2+a﹣4),
∴PQ=﹣a﹣(a2+a﹣4)=﹣a2﹣2a+4,
又∵OB=0﹣(﹣4)=4,
以点P,Q,B,O为顶点的四边形是平行四边形,
∴|PQ|=OB,
即|﹣a2﹣2a+4|=4,
①﹣a2﹣2a+4=4时,整理得,a2+4a=0,
解得a=0(舍去)或a=﹣4,
﹣a=4,
所以点Q坐标为(﹣4,4),
②﹣a2﹣2a+4=﹣4时,整理得,a2+4a﹣16=0,
解得a=﹣2±2,
所以点Q的坐标为(﹣2+2,2﹣2)或(﹣2﹣2,2+2),
综上所述,Q坐标为(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)时,使点P,Q,B,O为顶点的四边形是平行四边形.
【点睛】
本题是对二次函数的综合考查有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.
21、x1=,x2=
【解析】
试题分析:方程整理为一般形式,找出a,b,c的值,代入求根公式即可求出解.
试题解析:解:方程化为,,,.
>1.
.
即,.
22、 (1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.
【解析】
(1)利用中点坐标公式即可得出结论;
(2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
(1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.
【详解】
(1)∵点C是OA的中点,A(4,4),O(0,0),
∴C,
∴C(2,2);
故答案为(2,2);
(2)①∵AD=1,D(4,n),
∴A(4,n+1),
∵点C是OA的中点,
∴C(2,),
∵点C,D(4,n)在双曲线上,
∴,
∴,
∴反比例函数解析式为;
②由①知,n=1,
∴C(2,2),D(4,1),
设直线CD的解析式为y=ax+b,
∴,
∴,
∴直线CD的解析式为y=﹣x+1;
(1)如图,由(2)知,直线CD的解析式为y=﹣x+1,
设点E(m,﹣m+1),
由(2)知,C(2,2),D(4,1),
∴2<m<4,
∵EF∥y轴交双曲线于F,
∴F(m,),
∴EF=﹣m+1﹣,
∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,
∵2<m<4,
∴m=1时,S△OEF最大,最大值为
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.
23、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
【解析】
(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
解:(1)把点A(1,a)代入一次函数y=﹣x+4,
得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1
∴点B坐标(3,1);
作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),
设直线AD的解析式为y=mx+n,
把A,D两点代入得,, 解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,
令y=0,得x=,
∴点P坐标(,0),
(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
24、 (1) 1;(2)
【解析】
(1)由勾股定理求AB,设⊙O的半径为r,则r=(AC+BC-AB)求解;
(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则CG=x,由(1)可知CO=r=,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.
试题解析:(1)在Rt△ABC中,由勾股定理得AB==5,
∴☉O的半径r=(AC+BC-AB)=(4+3-5)=1;
(2)过G作GP⊥AC,垂足为P,设GP=x,
由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,
∴GP=PC=x,
∵Rt△AGP∽Rt△ABC,
∴=,解得x=,
即GP=,CG=,
∴OG=CG-CO=-=,
在Rt△ODG中,DG==.
湖北省荆州松滋市重点中学2021-2022学年中考数学模拟预测试卷含解析: 这是一份湖北省荆州松滋市重点中学2021-2022学年中考数学模拟预测试卷含解析,共20页。试卷主要包含了下列计算结果是x5的为等内容,欢迎下载使用。
2021-2022学年湖北省荆州市松滋市七年级(下)期末数学试卷(含解析): 这是一份2021-2022学年湖北省荆州市松滋市七年级(下)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年湖北省荆州市松滋市达标名校中考数学模拟预测题含解析: 这是一份2022年湖北省荆州市松滋市达标名校中考数学模拟预测题含解析,共21页。试卷主要包含了下列运算错误的是,计算等内容,欢迎下载使用。