2018届中考数学压轴题讲义
展开
这是一份2018届中考数学压轴题讲义,文件包含专题03因动点产生的直角三角形问题-2018届突破中考数学压轴题讲义解析版doc、专题04因动点产生的特殊四边形问题-2018届突破中考数学压轴题讲义解析版doc、专题10几何中的最值与定值问题-2018届突破中考数学压轴题讲义解析版doc、专题06圆的有关动点综合问题-2018届突破中考数学压轴题讲义解析版doc、专题05因动点产生的相似全等问题-2018届突破中考数学压轴题讲义解析版doc、专题02因动点产生的等腰三角形问题-2018届突破中考数学压轴题讲义解析版doc、专题07因动点产生的线段关系问题-2018届突破中考数学压轴题讲义解析版doc、专题08图形运动中的有关函数关系问题-2018届突破中考数学压轴题讲义解析版doc、专题01因动点产生的面积问题-2018届突破中考数学压轴题讲义解析版doc、专题09代数有关计算说理的综合问题-2018届突破中考数学压轴题讲义解析版doc、专题12新定义与阅读理解问题-2018届突破中考数学压轴题讲义解析版doc、专题11几何图形的三大变换问题-2018届突破中考数学压轴题讲义解析版doc、专题04因动点产生的特殊四边形问题-2018届突破中考数学压轴题讲义原卷版doc、专题01因动点产生的面积问题-2018届突破中考数学压轴题讲义原卷版doc、专题06圆的有关动点综合问题-2018届突破中考数学压轴题讲义原卷版doc、专题05因动点产生的相似全等问题-2018届突破中考数学压轴题讲义原卷版doc、专题03因动点产生的直角三角形问题-2018届突破中考数学压轴题讲义原卷版doc、专题02因动点产生的等腰三角形问题-2018届突破中考数学压轴题讲义原卷版doc、专题12新定义与阅读理解问题-2018届突破中考数学压轴题讲义原卷版doc、专题10几何中的最值与定值问题-2018届突破中考数学压轴题讲义原卷版doc、专题08图形运动中的有关函数关系问题-2018届突破中考数学压轴题讲义原卷版doc、专题09代数有关计算说理的综合问题-2018届突破中考数学压轴题讲义原卷版doc、专题11几何图形的三大变换问题-2018届突破中考数学压轴题讲义原卷版doc、专题07因动点产生的线段关系问题-2018届突破中考数学压轴题讲义原卷版doc等24份课件配套教学资源,其中PPT共0页, 欢迎下载使用。
【类型综述】图形运动的过程中,求面积随某个量变化的函数关系,是中考数学的热点问题.计算面积常见的有四种方法,一是规则图形的面积用面积公式;二是不规则图形的面积通过割补进行计算;三是同高(或同底)三角形的面积比等于对应边(或高)的比;四是相似三角形的面积比等于相似比的平方.前两种方法容易想到,但是灵活使用第三种和第四种方法,可以使得运算简单.【方法揭秘】一般情况下,在求出面积S关于自变量x的函数关系后,会提出在什么情况下(x为何值时),S取得最大值或最小值.关于面积的最值问题,有许多经典的结论.例1,周长一定的矩形,当正方形时,面积最大.例2,面积一定的矩形,当正方形时,周长最小.例3,周长一定的正多边形,当边数越大时,面积越大,极限值是圆.例4,如图1,锐角△ABC的内接矩形DEFG的面积为y,AD=x,当点D是AB的中点时,面积y最大.例5,如图2,点P在直线AB上方的抛物线上一点,当点P位于AB的中点E的正上方时,△PAB的面积最大.例6,如图3,△ABC中,∠A和对边BC是确定的,当AB=AC时,△ABC的面积最大.[来源:Zxxk.Com]图1 图2 图3【典例分析】例1 如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由. 图1 图2思路点拨1.第(2)题用含S的代数式表示x2-x1,我们反其道而行之,用x1,x2表示S.再注意平移过程中梯形的高保持不变,即y2-y1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB与x轴的夹角不变,直线AB与抛物线的对称轴的夹角不变.变化的直线PQ的斜率,因此假设直线PQ与AB的交点G在x轴的下方,或者假设交点G在x轴的上方.满分解答(1)抛物线的对称轴为直线,解析式为,顶点为M(1,).(2) 梯形O1A1B1C1的面积,由此得到.由于,所以.整理,得.因此得到.当S=36时, 解得 此时点A1的坐标为(6,3).(3)设直线AB与PQ交于点G,直线AB与抛物线的对称轴交于点E,直线PQ与x轴交于点F,那么要探求相似的△GAF与△GQE,有一个公共角∠G.在△GEQ中,∠GEQ是直线AB与抛物线对称轴的夹角,为定值.在△GAF中,∠GAF是直线AB与x轴的夹角,也为定值,而且∠GEQ≠∠GAF.因此只存在∠GQE=∠GAF的可能,△GQE∽△GAF.这时∠GAF=∠GQE=∠PQD.由于,,所以.解得. 图3 图4考点伸展第(3)题是否存在点G在x轴上方的情况?如图4,假如存在,说理过程相同,求得的t的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例2如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2).(1)求a、b、c的值;(2)求证:在点P运动的过程中,⊙P始终与x轴相交;(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.图1 思路点拨1.不算不知道,一算真奇妙,原来⊙P在x轴上截得的弦长MN=4是定值.2.等腰三角形AMN存在三种情况,其中MA=MN和NA=NM两种情况时,点P的纵坐标是相等的.满分解答(1)已知抛物线的顶点为(0,0),所以y=ax2.所以b=0,c=0.将代入y=ax2,得.解得(舍去了负值).(2)抛物线的解析式为,设点P的坐标为.已知A(0, 2),所以>.而圆心P到x轴的距离为,所以半径PA>圆心P到x轴的距离.所以在点P运动的过程中,⊙P始终与x轴相交.(3)如图2,设MN的中点为H,那么PH垂直平分MN.在Rt△PMH中,,,所以MH2=4.所以MH=2.因此MN=4,为定值.学*科网等腰△AMN存在三种情况:①如图3,当AM=AN时,点P为原点O重合,此时点P的纵坐标为0.图2 图3②如图4,当MA=MN时,在Rt△AOM中,OA=2,AM=4,所以OM=2.此时x=OH=2.所以点P的纵坐标为.③如图5,当NA=NM时,点P的纵坐标为也为.图4 图5考点伸展如果点P在抛物线上运动,以点P为圆心的⊙P总经过定点B(0, 1),那么在点P运动的过程中,⊙P始终与直线y=-1相切.这是因为:设点P的坐标为.已知B(0, 1),所以.而圆心P到直线y=-1的距离也为,所以半径PB=圆心P到直线y=-1的距离.所以在点P运动的过程中,⊙P始终与直线y=-1相切.例3如图1,已知一次函数y=-x+7与正比例函数 的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.满分解答(1)解方程组 得 所以点A的坐标是(3,4).令,得.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由,得.整理,得.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,,所以OB>AB.因此∠OAB>∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠PAQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中, 为定值,,.如图5,当AP=AQ时,解方程,得.如图6,当QP=QA时,点Q在PA的垂直平分线上,AP=2(OR-OP).解方程,得.如7,当PA=PQ时,那么.因此.解方程,得.综上所述,t=1或或5或时,△APQ是等腰三角形. 图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用来求解.例4如图1,在Rt△ABC中,∠ACB=90°,AB=13,CD//AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,∠BAE的平分线交BC于点G. (1)当CE=3时,求S△CEF∶S△CAF的值;(2)设CE=x,AE=y,当CG=2GB时,求y与x之间的函数关系式;(3)当AC=5时,联结EG,若△AEG为直角三角形,求BG的长.图1 思路点拨1.第(1)题中的△CEF和△CAF是同高三角形,面积比等于底边的比.2.第(2)题中的△ABC是斜边为定值的形状不确定的直角三角形.3.第(3)题中的直角三角形AEG分两种情况讨论.满分解答(1)如图2,由CE//AB,得.由于△CEF与△CAF是同高三角形,所以S△CEF∶S△CAF=3∶13.(2)如图3,延长AG交射线CD于M. 图2由CM//AB,得.所以CM=2AB=26.由CM//AB,得∠EMA=∠BAM.学%科网又因为AM平分∠BAE,所以∠BAM=∠EAM.所以∠EMA=∠EAM.所以y=EA=EM=26-x.图3 图4(3)在Rt△ABC中, AB=13,AC=5,所以BC=12.①如图 4,当∠AGE=90°时,延长EG交AB于N,那么△AGE≌△AGN.所以G是EN的中点.所以G是BC的中点,BG=6.②如图5,当∠AEG=90°时,由△CAF∽△EGF,得.由CE//AB,得.所以.又因为∠AFG=∠BFA,所以△AFG∽△BFA.所以∠FAG=∠B.所以∠GAB=∠B.所以GA=GB.作GH⊥AH,那么BH=AH=.在Rt△GBH中,由cos∠B=,得BG=÷=.图5 图6考点伸展第(3)题的第②种情况,当∠AEG=90°时的核心问题是说理GA=GB.如果用四点共圆,那么很容易.如图6,由A、C、E、G四点共圆,直接得到∠2=∠4.上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当∠AEG=90°时,设AG的中点为P,那么PC和PE分别是Rt△ACG和Rt△AEG斜边上的中线,所以PC=PE=PA=PG.所以∠1=2∠2,∠3=2∠5.如图8,在等腰△PCE中,∠CPE=180°-2(∠4+∠5),又因为∠CPE=180°-(∠1+∠3),所以∠1+∠3=2(∠4+∠5).所以∠1=2∠4.所以∠2=∠4=∠B.所以∠GAB=∠B.所以GA=GB.图7 图8例5在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.(1)求点B的坐标;(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得ED=PE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动).①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;②若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q到达点O时停止运动,点P也停止运动).过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动).若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.图1思路点拨1.这个题目最大的障碍,莫过于无图了.2.把图形中的始终不变的等量线段罗列出来,用含有t的式子表示这些线段的长.3.点C的坐标始终可以表示为(3t,2t),代入抛物线的解析式就可以计算此刻OP的长.4.当两个等腰直角三角形有边共线时,会产生新的等腰直角三角形,列关于t的方程就可以求解了.满分解答(1) 因为抛物线经过原点,所以. 解得,(舍去).因此.所以点B的坐标为(2,4).(2) ①如图4,设OP的长为t,那么PE=2t,EC=2t,点C的坐标为(3t, 2t).当点C落在抛物线上时,.解得.②如图1,当两条斜边PD与QM在同一条直线上时,点P、Q重合.此时3t=10.解得.如图2,当两条直角边PC与MN在同一条直线上,△PQN是等腰直角三角形,PQ=PE.此时.解得.如图3,当两条直角边DC与QN在同一条直线上,△PQC是等腰直角三角形,PQ=PD.此时.解得. 图1 图2 图3考点伸展在本题情境下,如果以PD为直径的圆E与以QM为直径的圆F相切,求t的值.如图5,当P、Q重合时,两圆内切,.如图6,当两圆外切时,. 图4 图5 图6【变式训练】1.(2017年贵州省毕节地区第27题)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.【答案】(1)抛物线解析式为y=x2﹣3x﹣4;(2)存在满足条件的P点,其坐标为( ,﹣2)(3)P点坐标为(2,﹣6)时,△PBC的最大面积为8.【解析】试题分析:(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PD,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,﹣4),∴直线BC解析式为y=x﹣4,∴F(t,t﹣4),∴PF=(t﹣4)﹣(t2﹣3t﹣4)=﹣t2+4t,∴S△PBC=S△PFC+S△PFB=PF•OE+PF•BE=PF•(OE+BE)=PF•OB=(﹣t2+4t)×4=﹣2(t﹣2)2+8,∴当t=2时,S△PBC最大值为8,此时t2﹣3t﹣4=﹣6,∴当P点坐标为(2,﹣6)时,△PBC的最大面积为8.考点:二次函数综合题.2.(2017年贵州省黔东南州第24题)如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;学科¥网(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣x+(2)证明见解析(3) 【解析】﹣x2﹣x+),则F(x,﹣x+4).然后可得到PF与x的函数关系式,最后利用二次函数的性质求解即可.试题解析:(1)设抛物线的解析式为y=a(x﹣2)(x+4),将点M的坐标代入得:﹣9a=2,解得:a=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)连接AM,过点M作MG⊥AD,垂足为G.把x=0代入y=﹣x+4得:y=4,∴∠MAG+∠OAB=90°,即∠MAB=90°.∴l是⊙M的切线.(3)∵∠PFE+∠FPE=90°,∠FBD+∠PFE=90°,[来源:Z*xx*k.Com]∴∠FPE=∠FBD.∴tan∠FPE=.∴PF:PE:EF=:2:1.∴P(,).∴△PEF的面积的最小值为=×()2=.考点:二次函数综合题3.(2017年湖北省荆州市第25题)(本题满分12分)如图在平面直角坐标系中,直线 QUOTE 与x QUOTE 轴、y轴分别交于A、B两点,点P、Q同时从点A出发,运动时间为秒.其中点P沿射线AB运动,速度为每秒4个单位长度,点Q沿射线AO运动,速度为每秒5个单位长度.以点Q为圆心,PQ长为半径作⊙Q.(1)求证:直线AB是⊙Q的切线;(2)过点A左侧x QUOTE 轴上的任意一点C(m,0),作直线AB的垂线CM,垂足为M,若CM与⊙Q相切于点D,求m与t QUOTE 的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C,直线AB、CM、y轴与⊙Q同时相切,若存在,请直接写出此时点C的坐标,若不存在,请说明理由.【答案】(1)证明见解析(2)m=4﹣t 或m=4﹣t(3)存在,(﹣,0)或(,0)或(﹣,0)或(,0)【解析】(3)分两种情形讨论即可,一共有四个点满足条件.试题解析:(1)如图1中,连接QP.在Rt△AOB中,OA=4,OB=3,∴AB==5,∵AP=4t,AQ=5t,∴,∵∠PAQ=∠BAO,∴△PAQ∽△BAO,∴∠APQ=∠AOB=90°,∴QP⊥AB,∴AB是⊙O的切线.(2)①如图2中,当直线CM在⊙O的左侧与⊙Q相切时,设切点为D,则四边形PQDM是正方形.∵OC+AQ﹣CQ=4,∴m+5t﹣t=4,∴m=4﹣t.(3)存在.理由如下:如图4中,当⊙Q在y则的右侧与y轴相切时,3t+5t=4,t= ,由(2)可知,m=﹣或.综上所述,满足条件的点C的坐标为(﹣,0)或(,0)或(﹣,0)或(,0).考点:一次函数综合题4.(2017年山东省东营市第25题)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+ (3) 【解析】性质可求得其最大值.学&科*网试题解析: (1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴ ,解得 ,∴抛物线解析式为y=﹣x2+x+;∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+ ,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想5.(2017年四川省内江市第28题)如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.【答案】(1);(2)S=,运动1秒使△PBQ的面积最大,最大面积是;(3)t=或t=.【解析】(4,0)、点C(0,3),分别代入(a≠0),得:,解得:,所以该抛物线的解析式为:;(2)设运动时间为t秒,则AM=3t,BN=t,∴MB=6﹣3t.由题意得,点C的坐标为(0,3).在Rt△BOC中,BC==5.如图1,过点N作NH⊥AB于点H,∴NH∥CO,∴△BHN∽△BOC,∴,即,∴HN=t,∴S△MBN=MB•HN=(6﹣3t)•t,即S= =,综上所述:t=或t=时,△MBN为直角三角形.考点:二次函数综合题;最值问题;二次函数的最值;动点型;存在型;分类讨论;压轴题.6.(2017年湖北省黄冈市第24题)已知:如图所示,在平面直角坐标系中,四边形是矩形,.动点从点出发,沿射线方向以每秒2个单位长度的速度运动;同时,动点从点出发,沿轴正半轴方向以每秒1个单位长度的速度运动.设点、点的运动时间为.(1)当时,求经过点 三点的抛物线的解析式;(2)当时,求的值;(3)当线段与线段相交于点,且时,求的值;(4)连接,当点在运动过程中,记与矩形重叠部分的面积为,求与的函数关系式.【答案】(1)(2)(3)t=3(4)【解析】 ∴P点的坐标为(2,3)设经过O、P、A三点的抛物线的解析式为y=ax(x-4)将P(2,3)代入解析式中,则有2×(2-4)a=3∴a=-∴依题意有CP=2t,OQ=t∴BP=2t-4,AQ=4-t∵CB∥OA∴△BMP∽△AMQ∴ ∴BP=2AM,即2t-4=2(4-t)解得t=3当0≤t≤2时,S=;当2<t≤4设线段AB与线段PQ相较于点D,过点Q作QN⊥CP于点N则△BDP∽△NQP∴ [来源:学科网ZXXK]当t>4时,设线段AB与CQ相交于点M,过点Q作QN⊥CP于点N则△CBM∽△CNQ学@科网∴ 又∵CB=OA=4,CN=OQ=t,NQ=3∴ ∴BM= 所以S= ∴ 考点:二次函数综合题7.(2017年山东省日照市第22题)如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.【答案】(1) CD=, P(2,﹣1);(2) y=x2﹣4x+3;(3) 存在满足条件的点Q,其坐标为(2,﹣1).试题分析:(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN=8S△QAB可求得点Q到x轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.试题解析:(1)如图,连接OC,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).[来源:学+科+网]考点:二次函数综合题.[来源:Z*xx*k.Com]
相关课件
这是一份初中数学中考复习 2020届中考数学高分课件:专题八 解答压轴题突破
这是一份初中数学中考复习 2020届中考数学高分课件:专题二 选择压轴题突破
这是一份第13讲 中考数学压轴题精讲-中考数学冲刺复习讲座课件PPT,共41页。PPT课件主要包含了总结提升等内容,欢迎下载使用。