终身会员
搜索
    上传资料 赚现金

    2021-2022学年贵州省贵阳市、六盘水市、安顺市重点名校中考数学仿真试卷含解析

    立即下载
    加入资料篮
    2021-2022学年贵州省贵阳市、六盘水市、安顺市重点名校中考数学仿真试卷含解析第1页
    2021-2022学年贵州省贵阳市、六盘水市、安顺市重点名校中考数学仿真试卷含解析第2页
    2021-2022学年贵州省贵阳市、六盘水市、安顺市重点名校中考数学仿真试卷含解析第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年贵州省贵阳市、六盘水市、安顺市重点名校中考数学仿真试卷含解析

    展开

    这是一份2021-2022学年贵州省贵阳市、六盘水市、安顺市重点名校中考数学仿真试卷含解析,共24页。试卷主要包含了函数的自变量x的取值范围是,下列说法中,正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )

    A. B. C. D.
    2.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为(  )

    A.5 B.10 C.10 D.15
    3.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    4.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是(  )
    A.3 B.4 C. D.
    5.已知x2-2x-3=0,则2x2-4x的值为( )
    A.-6 B.6 C.-2或6 D.-2或30
    6.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为(  )

    A.70° B.80° C.90° D.100°
    7.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是(  )
    A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
    8.函数的自变量x的取值范围是( )
    A. B. C. D.
    9.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,其顶点坐标为A(﹣1,﹣3),与x轴的一个交点为B(﹣3,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②不等式ax2+(b﹣m)x+c﹣n<0的解集为﹣3<x<﹣1;③抛物线与x轴的另一个交点是(3,0);④方程ax2+bx+c+3=0有两个相等的实数根;其中正确的是(  )

    A.①③ B.②③ C.③④ D.②④
    10.下列说法中,正确的是(  )
    A.长度相等的弧是等弧
    B.平分弦的直径垂直于弦,并且平分弦所对的两条弧
    C.经过半径并且垂直于这条半径的直线是圆的切线
    D.在同圆或等圆中90°的圆周角所对的弦是这个圆的直径
    11.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3 cm,则∠BAC的度数为(  )
    A.15°                             B.75°或15°                             C.105°或15°                             D.75°或105°
    12.如图,在矩形ABCD中AB=,BC=1,将矩形ABCD绕顶点B旋转得到矩形A'BC'D,点A恰好落在矩形ABCD的边CD上,则AD扫过的部分(即阴影部分)面积为(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.

    14.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.

    15.一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_____.
    16.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.

    17.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.

    18.如图,已知△ABC中,AB=AC=5,BC=8,将△ABC沿射线BC方向平移m个单位得到△DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是______.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知:如图1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0<t<5),解答下列问题:
    (1)当为t何值时,PQ∥BC;
    (2)设△AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;
    (3)如图2,连接PC,并把△PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由.

    20.(6分)《九章算术》中有这样一道题,原文如下:
    今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为;若甲把其的钱给乙,则乙的钱数也能为,问甲、乙各有多少钱?
    请解答上述问题.
    21.(6分)如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.

    (1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;
    (2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;
    (3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.
    22.(8分)解不等式组,并把解集在数轴上表示出来.
    23.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:
    A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.
    根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:

    (1)请你补全条形统计图;
    (2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;
    (3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.
    24.(10分)探究:
    在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手   次:;若参加聚会的人数为5,则共握手   次;若参加聚会的人数为n(n为正整数),则共握手   次;若参加聚会的人共握手28次,请求出参加聚会的人数.
    拓展:
    嘉嘉给琪琪出题:
    “若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
    琪琪的思考:“在这个问题上,线段总数不可能为30”
    琪琪的思考对吗?为什么?
    25.(10分)计算:
    (1)
    (2)
    26.(12分)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
    求证:AB=DC;试判断△OEF的形状,并说明理由.
    27.(12分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
    解:过点A作AH⊥BC,垂足为H.
    ∵在△ADE中,AD=AE(已知)
    AH⊥BC(所作)
    ∴DH=EH(等腰三角形底边上的高也是底边上的中线)
    又∵BD=CE(已知)
    ∴BD+DH=CE+EH(等式的性质)
    即:BH=   
    又∵   (所作)
    ∴AH为线段   的垂直平分线
    ∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
    ∴   (等边对等角)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
    【详解】
    过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
    ∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
    ∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
    ∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
    ∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.
    故选A.

    【点睛】
    本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
    2、B
    【解析】
    作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,

    ∵AE=CG,BE=BE′,
    ∴E′G′=AB=10,
    ∵GG′=AD=5,
    ∴E′G=,
    ∴C四边形EFGH=2E′G=10,
    故选B.
    【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.
    3、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    4、C
    【解析】
    如图所示:
    过点O作OD⊥AB于点D,

    ∵OB=3,AB=4,OD⊥AB,
    ∴BD=AB=×4=2,
    在Rt△BOD中,OD=.
    故选C.
    5、B
    【解析】
    方程两边同时乘以2,再化出2x2-4x求值.
    解:x2-2x-3=0
    2×(x2-2x-3)=0
    2×(x2-2x)-6=0
    2x2-4x=6
    故选B.
    6、B
    【解析】
    首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.
    【详解】
    ∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,
    ∴∠BMF=120°,∠FNB=80°,
    ∵将△BMN沿MN翻折得△FMN,
    ∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,
    ∴∠F=∠B=180°-60°-40°=80°,
    故选B.
    【点睛】
    主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.
    7、D
    【解析】
    试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
    故选D
    考点:几何体的形状
    8、D
    【解析】
    根据二次根式的意义,被开方数是非负数.
    【详解】
    根据题意得,
    解得.
    故选D.
    【点睛】
    本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负数.
    9、D
    【解析】
    ①错误.由题意a>1.b>1,c<1,abc<1;
    ②正确.因为y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,当ax2+bx+c<mx+n时,-3<x<-1;即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确;
    ③错误.抛物线与x轴的另一个交点是(1,1);
    ④正确.抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    【详解】
    解:∵抛物线开口向上,∴a>1,
    ∵抛物线交y轴于负半轴,∴c<1,
    ∵对称轴在y轴左边,∴- <1,
    ∴b>1,
    ∴abc<1,故①错误.
    ∵y1=ax2+bx+c(a≠1)图象与直线y2=mx+n(m≠1)交于A,B两点,
    当ax2+bx+c<mx+n时,-3<x<-1;
    即不等式ax2+(b-m)x+c-n<1的解集为-3<x<-1;故②正确,
    抛物线与x轴的另一个交点是(1,1),故③错误,
    ∵抛物线y1=ax2+bx+c(a≠1)图象与直线y=-3只有一个交点,
    ∴方程ax2+bx+c+3=1有两个相等的实数根,故④正确.
    故选:D.
    【点睛】
    本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    10、D
    【解析】
    根据切线的判定,圆的知识,可得答案.
    【详解】
    解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;
    B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;
    C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;
    D、在同圆或等圆中90°的圆周角所对的弦是这个圆的直径,故D正确;
    故选:D.
    【点睛】
    本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键.
    11、C
    【解析】
    解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=3,∠CAD=45°,则∠BAC=105°;
    如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=3,∠CAD=45°,则∠BAC=15°.故选C.

    点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.
    12、A
    【解析】
    本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B=可以得出△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´
    【详解】
    先连接BD,首先求得正方形ABCD的面积为,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为,扇形BDD´的面积为,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´=;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=,阴影部分面积=面积DA´D´+面积ADA´=
    【点睛】
    熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣1<x<2
    【解析】
    根据图象得出取值范围即可.
    【详解】
    解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
    所以当y1>y2时,﹣1<x<2,
    故答案为﹣1<x<2
    【点睛】
    此题考查二次函数与不等式,关键是根据图象得出取值范围.
    14、2
    【解析】
    分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.
    详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.
    ∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,
    ∴DC==5,∴AC=DC,
    在△APC与△DOC中,
    ∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,
    ∴△APC≌△DOC,∴AP=OD=3,
    ∴PB==2.
    故答案为2.

    点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.
    15、60°或120°
    【解析】
    首先根据题意画出图形,过点O作OD⊥AB于点D, 通过垂径定理, 即可推出∠AOD的度数, 求得∠AOB的度数, 然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.
    【详解】
    解:如图:
    连接OA,过点O作OD⊥AB 于点D,
    OA=2,AB=,AD=BD=,
    AD:OA=:2,
    ∠AOD=,∠ AOB=,
    ∠AMB=,∠ANB=.
    故答案为: 或.
    【点睛】
    本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.
    16、25
    【解析】
    试题解析:由题意

    17、2
    【解析】
    设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.
    【详解】
    作MG⊥DC于G,如图所示:

    设MN=y,PC=x,
    根据题意得:GN=2,MG=|10-1x|,
    在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,
    即y1=21+(10-1x)1.
    ∵0<x<10,
    ∴当10-1x=0,即x=2时,y1最小值=12,
    ∴y最小值=2.即MN的最小值为2;
    故答案为:2.
    【点睛】
    本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.
    18、或5或1.
    【解析】
    根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可.
    【详解】
    解:如图
    (1)当在△ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.
    (2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,
    (3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:
    则AN=3,AC=,AD=m,
    得:,得m=,
    综上所述:m为或5或1,
    所以答案:或5或1.
    【点睛】
    本题主要考查等腰三角形的性质,注意分类讨论的完整性.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)当t=时,PQ∥BC;(2)﹣(t﹣)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQP′C为菱形
    【解析】
    (1)只要证明△APQ∽△ABC,可得=,构建方程即可解决问题;
    (2)过点P作PD⊥AC于D,则有△APD∽△ABC,理由相似三角形的性质构建二次函数即可解决问题;
    (3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根据OC=CQ,构建方程即可解决问题;
    【详解】
    (1)在Rt△ABC中,AB===10,
    BP=2t,AQ=t,则AP=10﹣2t,
    ∵PQ∥BC,
    ∴△APQ∽△ABC,
    ∴=,即=,
    解得t=,
    ∴当t=时,PQ∥BC.
    (2)过点P作PD⊥AC于D,则有△APD∽△ABC,

    ∴=,即=,
    ∴PD=6﹣t,
    ∴y=t(6﹣t)=﹣(t﹣)2+,
    ∴当t=时,y有最大值为.
    (3)存在.
    理由:连接PP′,交AC于点O.

    ∵四边形PQP′C为菱形,
    ∴OC=CQ,
    ∵△APO∽△ABC,
    ∴=,即=,
    ∴OA=(5﹣t),
    ∴8﹣(5﹣t)=(8﹣t),
    解得t=,
    ∴当t=时,四边形PQP′C为菱形.
    【点睛】
    本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.
    20、甲有钱,乙有钱.
    【解析】
    设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.
    【详解】
    解:设甲有钱,乙有钱.
    由题意得: ,
    解方程组得: ,
    答:甲有钱,乙有钱.
    【点睛】
    本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.
    21、(1)(2)(3) .
    【解析】
    (1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是△ABC的重心,然后求得BE的长.
    (2)过点B作BF∥CA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PD⊥AB,D是边AB的中点,在△ABC中可求得cosA的值.
    (3)由,∠PBD=∠ABP,证得△PBD∽△ABP,再证明△DPE∽△DCP得到,PD可求.
    【详解】
    解:(1)∵P为AC的中点,AC=8,
    ∴CP=4,
    ∵∠ACB=90°,BC=6,
    ∴BP=,
    ∵D是边AB的中点,P为AC的中点,
    ∴点E是△ABC的重心,
    ∴,
    (2)过点B作BF∥CA交CD的延长线于点F,

    ∴,
    ∵BD=DA,
    ∴FD=DC,BF=AC,
    ∵CE=2,ED=3,则CD=5,
    ∴EF=8,
    ∴,
    ∴,
    ∴,设CP=k,则PA=3k,
    ∵PD⊥AB,D是边AB的中点,
    ∴PA=PB=3k,
    ∴,
    ∴,
    ∵,
    ∴,
    (3)∵∠ACB=90°,D是边AB的中点,
    ∴,
    ∵,
    ∴,
    ∵∠PBD=∠ABP,
    ∴△PBD∽△ABP,
    ∴∠BPD=∠A,
    ∵∠A=∠DCA,
    ∴∠DPE=∠DCP,
    ∵∠PDE=∠CDP,
    △DPE∽△DCP,
    ∴,
    ∵DE=3,DC=5,
    ∴.

    【点睛】
    本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.
    22、﹣1≤x<1.

    【解析】
    求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.
    【详解】
    解不等式①,得x<1,
    解不等式②,得x≥﹣1,
    ∴不等式组的解集是﹣1≤x<1.
    不等式组的解集在数轴上表示如下:

    23、(1)详见解析;(2)72°;(3)
    【解析】
    (1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;
    (2)用360°乘以C类别人数所占比例即可得;
    (3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.
    【详解】
    解:(1)∵ 抽 查的总人数为:(人)
    ∴ 类人数为:(人)
    补全条形统计图如下:

    (2)“碳酸饮料”所在的扇形的圆心角度数为:
    (3)设男生为、,女生为、、,
    画树状图得:

    ∴恰好抽到一男一女的情况共有12 种,分别是
    ∴ (恰好抽到一男一女).
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
    【解析】
    探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
    (2)由(1)的结论结合参会人数为n,即可得出结论;
    (3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
    拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
    【详解】
    探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
    故答案为3;1.
    (2)∵参加聚会的人数为n(n为正整数),
    ∴每人需跟(n-1)人握手,
    ∴握手总数为.
    故答案为.
    (3)依题意,得:=28,
    整理,得:n2-n-56=0,
    解得:n1=8,n2=-7(舍去).
    答:参加聚会的人数为8人.
    拓展:琪琪的思考对,理由如下:
    如果线段数为2,则由题意,得:=2,
    整理,得:m2-m-60=0,
    解得m1=,m2=(舍去).
    ∵m为正整数,
    ∴没有符合题意的解,
    ∴线段总数不可能为2.
    【点睛】
    本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.
    25、(1);(2)1.
    【解析】
    (1)根据二次根式的混合运算法则即可;
    (2)根据特殊角的三角函数值即可计算.
    【详解】
    解:(1)原式=


    (2)原式


    【点睛】
    本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.
    26、(1)证明略
    (2)等腰三角形,理由略
    【解析】
    证明:(1)∵BE=CF,
    ∴BE+EF=CF+EF, 即BF=CE.
    又∵∠A=∠D,∠B=∠C,
    ∴△ABF≌△DCE(AAS),
    ∴AB=DC.
    (2)△OEF为等腰三角形
    理由如下:∵△ABF≌△DCE,
    ∴∠AFB=∠DEC.
    ∴OE=OF.
    ∴△OEF为等腰三角形.
    27、见解析
    【解析】
    根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.
    【详解】
    过点A作AH⊥BC,垂足为H.
    ∵在△ADE中,AD=AE(已知),
    AH⊥BC(所作),
    ∴DH=EH(等腰三角形底边上的高也是底边上的中线).
    又∵BD=CE(已知),
    ∴BD+DH=CE+EH(等式的性质),
    即:BH=CH.
    ∵AH⊥BC(所作),
    ∴AH为线段BC的垂直平分线.
    ∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).
    ∴∠B=∠C(等边对等角).
    【点睛】
    本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;

    相关试卷

    山东青岛重点名校2021-2022学年中考数学仿真试卷含解析:

    这是一份山东青岛重点名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,如图,空心圆柱体的左视图是,下列命题正确的是等内容,欢迎下载使用。

    山东广饶县重点名校2021-2022学年中考数学仿真试卷含解析:

    这是一份山东广饶县重点名校2021-2022学年中考数学仿真试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若=1,则符合条件的m有,下列各式计算正确的是,将抛物线绕着点,实数 的相反数是等内容,欢迎下载使用。

    青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析:

    这是一份青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列命题中真命题是,点M等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map