2021-2022学年北京教育学院附属中学初中数学毕业考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )
A.小明不是胜就是输,所以小明胜的概率为 B.小明胜的概率是,所以输的概率是
C.两人出相同手势的概率为 D.小明胜的概率和小亮胜的概率一样
2.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则( )
①B地在C地的北偏西50°方向上;
②A地在B地的北偏西30°方向上;
③cos∠BAC=;
④∠ACB=50°.其中错误的是( )
A.①② B.②④ C.①③ D.③④
3.下列计算正确的是( )
A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
4.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )
A. B. C. D.
5.如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是
A. B.
C. D.
6.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )
A.56 B.58 C.63 D.72
7.下面计算中,正确的是( )
A.(a+b)2=a2+b2 B.3a+4a=7a2
C.(ab)3=ab3 D.a2•a5=a7
8.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( )
A.36° B.54° C.72° D.108°
9.有四包真空包装的火腿肠,每包以标准质量450g为基准,超过的克数记作正数,不足的克数记作负数.下面的数据是记录结果,其中与标准质量最接近的是( )
A.+2 B.﹣3 C.+4 D.﹣1
10.自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
二、填空题(共7小题,每小题3分,满分21分)
11.已知关于x的一元二次方程kx2+3x﹣4k+6=0有两个相等的实数根,则该实数根是_____.
12.同时掷两粒骰子,都是六点向上的概率是_____.
13.计算()()的结果等于_____.
14.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).
15.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
16.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程).
17.已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____.
三、解答题(共7小题,满分69分)
18.(10分)某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下
(1)样本中D级的学生人数占全班学生人数的百分比是 ;
(2)扇形统计图中A级所在的扇形的圆心角度数是 ;
(3)请把条形统计图补充完整;
(4)若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
19.(5分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?
20.(8分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
生产甲产品件数(件) | 生产乙产品件数(件) | 所用总时间(分钟) |
10 | 10 | 350 |
30 | 20 | 850 |
(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
①用含a的代数式表示小王四月份生产乙种产品的件数;
②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
21.(10分)先化简,再求值:(),其中=
22.(10分)先化简,再求值÷(x﹣),其中x=.
23.(12分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元
(1)笔记本和钢笔的单价各多少元?
(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;
(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.
24.(14分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
利用概率公式,一一判断即可解决问题.
【详解】
A、错误.小明还有可能是平;
B、错误、小明胜的概率是 ,所以输的概率是也是;
C、错误.两人出相同手势的概率为;
D、正确.小明胜的概率和小亮胜的概率一样,概率都是;
故选D.
【点睛】
本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.
2、B
【解析】
先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.
【详解】
如图所示,
由题意可知,∠1=60°,∠4=50°,
∴∠5=∠4=50°,即B在C处的北偏西50°,故①正确;
∵∠2=60°,
∴∠3+∠7=180°﹣60°=120°,即A在B处的北偏西120°,故②错误;
∵∠1=∠2=60°,
∴∠BAC=30°,
∴cos∠BAC=,故③正确;
∵∠6=90°﹣∠5=40°,即公路AC和BC的夹角是40°,故④错误.
故选B.
【点睛】
本题考查的是方向角,平行线的性质,特殊角的三角函数值,解答此类题需要从运动的角度,正确画出方位角,再结合平行线的性质求解.
3、D
【解析】
A、原式=a2﹣4,不符合题意;
B、原式=a2﹣a﹣2,不符合题意;
C、原式=a2+b2+2ab,不符合题意;
D、原式=a2﹣2ab+b2,符合题意,
故选D
4、A
【解析】
首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.
【详解】
画树状图如下:
由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,
∴两次都摸到黄球的概率为,
故选A.
【点睛】
此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.
5、A
【解析】
依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象.
【详解】
解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,
抛物线向上平移5个单位后可得:,即,
形成的图象是A选项.
故选A.
【点睛】
本题考查反比例函数图象上点的坐标特征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答.
6、B
【解析】
试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个.
考点:规律题
7、D
【解析】
直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.
【详解】
A. (a+b)2=a2+b2+2ab,故此选项错误;
B. 3a+4a=7a,故此选项错误;
C. (ab)3=a3b3,故此选项错误;
D. a2a5=a7,正确。
故选:D.
【点睛】
本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.
8、C
【解析】
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是=72度,
故选C.
9、D
【解析】
试题解析:因为|+2|=2,|-3|=3,|+4|=4,|-1|=1,
由于|-1|最小,所以从轻重的角度看,质量是-1的工件最接近标准工件.
故选D.
10、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:1100万=11000000=1.1×107.
故选B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣1
【解析】
根据二次项系数非零结合根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出k值,将其代入原方程中解之即可得出原方程的解.
【详解】
解:∵关于x的一元二次方程kx1+3x-4k+6=0有两个相等的实数根,
∴,
解得:k=,
∴原方程为x1+4x+4=0,即(x+1)1=0,
解得:x=-1.
故答案为:-1.
【点睛】
本题考查根的判别式、一元二次方程的定义以及配方法解一元二次方程,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.
12、.
【解析】
同时掷两粒骰子,一共有6×6=36种等可能情况,都是六点向上只有一种情况,按概率公式计算即可.
【详解】
解:都是六点向上的概率是.
【点睛】
本题考查了概率公式的应用.
13、4
【解析】
利用平方差公式计算.
【详解】
解:原式=()2-()2
=7-3
=4.
故答案为:4.
【点睛】
本题考查了二次根式的混合运算.
14、<
【解析】
把点(-1,a)、(-2,b)分别代入抛物线,则有:
a=1-2-3=-4,b=4-4-3=-3,
-4<-3,
所以a<b,
故答案为<.
15、
【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
【详解】
解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=OB=1
则边BC扫过区域的面积为:
故答案为.
【点睛】
考核知识点:扇形面积计算.熟记公式是关键.
16、π(x+5)1=4πx1.
【解析】
根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.
【详解】
解:设小圆的半径为x米,则大圆的半径为(x+5)米,
根据题意得:π(x+5)1=4πx1,
故答案为π(x+5)1=4πx1.
【点睛】
本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.
17、1﹣1或﹣1
【解析】
直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,直线y=kx+4与y=|x1-x-1|的图象恰好有三个公共点,即-x1+x+1=kx+4有相等的实数解,利用根的判别式的意义可求出此时k的值,另外当y=kx+4过(1,0)时,也满足条件.
【详解】
解:当y=0时,x1-x-1=0,解得x1=-1,x1=1,
则抛物线y=x1-x-1与x轴的交点为(-1,0),(1,0),
把抛物线y=x1-x-1图象x轴下方的部分沿x轴翻折到x轴上方,
则翻折部分的抛物线解析式为y=-x1+x+1(-1≤x≤1),
当直线y=kx+4与抛物线y=-x1+x+1(-1≤x≤1)相切时,
直线y=kx+4与函数y=|x1-x-1|的图象恰好有三个公共点,
即-x1+x+1=kx+4有相等的实数解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
解得k=1±1 ,
所以k的值为1+1或1-1.
当k=1+1时,经检验,切点横坐标为x=-<-1不符合题意,舍去.
当y=kx+4过(1,0)时,k=-1,也满足条件,
故答案为1-1或-1.
【点睛】
本题考查了二次函数与几何变换:翻折变化不改变图形的大小,故|a|不变,利用顶点式即可求得翻折后的二次函数解析式;也可利用绝对值的意义,直接写出自变量在-1≤x≤1上时的解析式。
三、解答题(共7小题,满分69分)
18、(1)10%; (2)72; (3)5,见解析; (4)330.
【解析】
解:(1)根据题意得:
D级的学生人数占全班人数的百分比是:
1-20%-46%-24%=10%;
(2)A级所在的扇形的圆心角度数是:20%×360°=72°;
(3)∵A等人数为10人,所占比例为20%,
∴抽查的学生数=10÷20%=50(人),
∴D级的学生人数是50×10%=5(人),
补图如下:
(4)根据题意得:
体育测试中A级和B级的学生人数之和是:500×(20%+46%)=330(名),
答:体育测试中A级和B级的学生人数之和是330名.
【点睛】
本题考查统计的知识,要求考生会识别条形统计图和扇形统计图.
19、规定日期是6天.
【解析】
本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.
【详解】
解:设工作总量为1,规定日期为x天,则若单独做,甲队需x天,乙队需x+3天,根据题意列方程得
解方程可得x=6,
经检验x=6是分式方程的解.
答:规定日期是6天.
20、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
【解析】
(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
(2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
②根据“小王四月份的工资不少于1500元”即可列出不等式.
【详解】
(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:
,
解这个方程组得:,
答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
∴一小时生产甲产品4件,生产乙产品3件,
所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
②依题意:1.5a+2.8(600-)≥1500,
1680﹣0.6a≥1500,
解得:a≤1.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
21、
【解析】
分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.
详解:原式=
将
原式=
点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.
22、6
【解析】
【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
【详解】原式=
=
=,
当x=,原式==6.
【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.
23、(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.
【解析】
(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得
答:每个文具盒14元,每支钢笔15元.
(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.
买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:
当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),
即y2=12x+1.
(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;
当y1=y2,即12.6x=12x+1时,解得x=2;
当y1>y2,即12.6x>12x+1时,解得x>2.
综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;
当购买奖品2件时,买文具盒和买钢笔钱数相等;
当购买奖品超过2件时,买钢笔省钱.
24、小亮说的对,CE为2.6m.
【解析】
先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
【详解】
解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
∵tan∠BAD=,
∴BD=10×tan18°,
∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
在△ABD中,∠CDE=90°﹣∠BAD=72°,
∵CE⊥ED,
∴sin∠CDE=,
∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
∵2.6m<2.7m,且CE⊥AE,
∴小亮说的对.
答:小亮说的对,CE为2.6m.
【点睛】
本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.
云南弥勒市2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份云南弥勒市2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列运算正确的是,下列计算正确的是,已知等内容,欢迎下载使用。
河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河南聚焦2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共27页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为等内容,欢迎下载使用。
河北保定竞秀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析: 这是一份河北保定竞秀区2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了已知二次函数y=,已知,﹣18的倒数是等内容,欢迎下载使用。