2022年北京市大兴区重点中学初中数学毕业考试模拟冲刺卷含解析
展开1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为( )
A.3.38×107B.33.8×109C.0.338×109D.3.38×1010
2.二次函数的最大值为( )
A.3B.4
C.5D.6
3.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( )
A.B.2C.2D.4
4.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
5.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是( )
A.方差是8B.极差是9C.众数是﹣1D.平均数是﹣1
6.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )
A.0.3B.0.4C.0.5D.0.6
7.下列四个几何体中,主视图与左视图相同的几何体有( )
A.1个B.2个C.3个D.4个
8.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
9.化简(﹣a2)•a5所得的结果是( )
A.a7B.﹣a7C.a10D.﹣a10
10.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数 (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )
A.B. C.D.12
11.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是( )
A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法判断
12.下列四个几何体,正视图与其它三个不同的几何体是( )
A.B.
C.D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在平面直角坐标系xOy中,点A(4,3)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标______.
14.如图,在矩形ABCD中,AB=8,AD=6,点E为AB上一点,AE=2,点F在AD上,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上时,折痕EF的长为_____.
15.如图,在平行四边形ABCD中,过对角线AC与BD的交点O作AC的垂线交于点E,连接CE,若AB=4,BC=6,则△CDE的周长是______.
16.不等式组的解集是_____;
17.如图,数轴上点A所表示的实数是________________.
18.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
求证:△ABE≌△CAD;求∠BFD的度数.
20.(6分)如图1,在菱形ABCD中,AB=,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.
(1)求证:BE=DF;
(2)当t= 秒时,DF的长度有最小值,最小值等于 ;
(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?
21.(6分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.
例如:求点到直线的距离.
解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.
22.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
23.(8分)计算:+(﹣ )﹣1+|1﹣|﹣4sin45°.
24.(10分)问题探究
(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为 ;
(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
问题解决
(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.
25.(10分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
率分布表和频率分布直方图(如图).
(1)补全频率分布表;
(2)在频率分布直方图中,长方形ABCD的面积是 ;这次调查的样本容量是 ;
(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
26.(12分)观察规律并填空.
______(用含n的代数式表示,n 是正整数,且 n ≥ 2)
27.(12分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据科学记数法的定义可得到答案.
【详解】
338亿=33800000000=,
故选D.
【点睛】
把一个大于10或者小于1的数表示为的形式,其中1≤|a|<10,这种记数法叫做科学记数法.
2、C
【解析】
试题分析:先利用配方法得到y=﹣(x﹣1)2+1,然后根据二次函数的最值问题求解.
解:y=﹣(x﹣1)2+1,
∵a=﹣1<0,
∴当x=1时,y有最大值,最大值为1.
故选C.
考点:二次函数的最值.
3、B
【解析】
圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.
【详解】
解:∵圆内接正六边形的边长是1,
∴圆的半径为1.
那么直径为2.
圆的内接正方形的对角线长为圆的直径,等于2.
∴圆的内接正方形的边长是1.
故选B.
【点睛】
本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.
4、C
【解析】
根据轴对称图形与中心对称图形的概念判断即可.
【详解】
第一个图形不是轴对称图形,是中心对称图形;
第二、三、四个图形是轴对称图形,也是中心对称图形;
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、A
【解析】
根据题意可知x=-1,
平均数=(-6-1-1-1+2+1)÷6=-1,
∵数据-1出现两次最多,
∴众数为-1,
极差=1-(-6)=2,
方差= [(-6+1)2+(-1+1)2+(-1+1)2+(2+1)2+(-1+1)2+(1+1)2]=2.
故选A.
6、C
【解析】
用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.
【详解】
仰卧起坐个数不少于10个的有12、10、10、61、72共1个,
所以,频率==0.1.
故选C.
【点睛】
本题考查了频数与频率,频率=.
7、D
【解析】
解:①正方体的主视图与左视图都是正方形;
②球的主视图与左视图都是圆;
③圆锥主视图与左视图都是三角形;
④圆柱的主视图和左视图都是长方形;
故选D.
8、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
9、B
【解析】
分析:根据同底数幂的乘法计算即可,计算时注意确定符号.
详解: (-a2)·a5=-a7.
故选B.
点睛:本题考查了同底数幂的乘法,熟练掌握同底数的幂相乘,底数不变,指数相加是解答本题的关键.
10、C
【解析】
设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE= 9求出k.
【详解】
∵四边形OCBA是矩形,
∴AB=OC,OA=BC,
设B点的坐标为(a,b),
∵BD=3AD,
∴D(,b),
∵点D,E在反比例函数的图象上,
∴=k,
∴E(a, ),
∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-• -•-••(b-)=9,
∴k=,
故选:C
【点睛】
考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键.
11、B
【解析】
比较OP与半径的大小即可判断.
【详解】
,,
,
点P在外,
故选B.
【点睛】
本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.
12、C
【解析】
根据几何体的三视图画法先画出物体的正视图再解答.
【详解】
解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
故选:C.
【点睛】
此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(2,2).
【解析】
连结OA,根据勾股定理可求OA,再根据点与圆的位置关系可得一个符合要求的点B的坐标.
【详解】
如图,连结OA,
OA==5,
∵B为⊙O内一点,
∴符合要求的点B的坐标(2,2)答案不唯一.
故答案为:(2,2).
【点睛】
考查了点与圆的位置关系,坐标与图形性质,关键是根据勾股定理得到OA的长.
14、4或4.
【解析】
①当AF<AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过E作EH⊥MN于H,由矩形的性质得到MH=AE=2,根据勾股定理得到A′H=,根据勾股定理列方程即可得到结论;②当AF>AD时,由折叠的性质得到A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,过A′作HG∥BC交AB于G,交CD于H,根据矩形的性质得到DH=AG,HG=AD=6,根据勾股定理即可得到结论.
【详解】
①当AF<AD时,如图1,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
则AM=AD=3,
过E作EH⊥MN于H,
则四边形AEHM是矩形,
∴MH=AE=2,
∵A′H=,
∴A′M=,
∵MF2+A′M2=A′F2,
∴(3-AF)2+()2=AF2,
∴AF=2,
∴EF==4;
②当AF>AD时,如图2,将△AEF沿EF折叠,当折叠后点A的对应点A′恰好落在BC的垂直平分线上,
则A′E=AE=2,AF=A′F,∠FA′E=∠A=90°,
设MN是BC的垂直平分线,
过A′作HG∥BC交AB于G,交CD于H,
则四边形AGHD是矩形,
∴DH=AG,HG=AD=6,
∴A′H=A′G=HG=3,
∴EG==,
∴DH=AG=AE+EG=3,
∴A′F==6,
∴EF==4,
综上所述,折痕EF的长为4或4,
故答案为:4或4.
【点睛】
本题考查了翻折变换-折叠问题,矩形的性质和判定,勾股定理,正确的作出辅助线是解题的关键.
15、1
【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=1,继而可得结论.
【详解】
∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC.
∵AB=4,BC=6,∴AD+CD=1.
∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=1.
故答案为1.
【点睛】
本题考查了平行四边形的性质,线段的垂直平分线的性质定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
16、x≤1
【解析】
分析:分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.
详解: ,
由①得:x
由②得:.
则不等式组的解集为:x.
故答案为x≤1.
点睛:本题主要考查了解一元一次不等式组.
17、
【解析】
A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.
【详解】
解:直角三角形斜边长度为,则A点到-1的距离等于,
则A点所表示的数为:﹣1+
【点睛】
本题考查了利用勾股定理求解数轴上点所表示的数.
18、60.
【解析】
首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
【详解】
设半圆的圆心为O,连接OE,OA,
∵CD=2OC=2BC,
∴OC=BC,
∵∠ACB=90°,即AC⊥OB,
∴OA=BA,
∴∠AOC=∠ABC,
∵∠BAC=30°,
∴∠AOC=∠ABC=60°,
∵AE是切线,
∴∠AEO=90°,
∴∠AEO=∠ACO=90°,
∵在Rt△AOE和Rt△AOC中,
,
∴Rt△AOE≌Rt△AOC(HL),
∴∠AOE=∠AOC=60°,
∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
∴点E所对应的量角器上的刻度数是60°,
故答案为:60.
【点睛】
本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2).
【解析】
试题分析:(1)根据等边三角形的性质根据SAS即可证明△ABE≌△CAD;
(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.
试题解析:(1)∵△ABC为等边三角形,
∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.
在△ABE和△CAD中,
AB=CA, ∠BAC=∠C,AE =CD,
∴△ABE≌△CAD(SAS),
(2)∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∵∠BAD+∠CAD=60°,
∴∠BAD+∠EBA=60°,
∵∠BFD=∠ABE+∠BAD,
∴∠BFD=60°.
20、(1)见解析;(2)t=(6+6),最小值等于12;(3)t=6秒或6秒时,△EPQ是直角三角形
【解析】
(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;
(2)作BE′⊥DA交DA的延长线于E′.当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;
(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据AB=CD=6,tan∠ABC=tan∠ADC=2即可求得DE;
②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得DE=6.
【详解】
(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,
∴∠DCF=∠BCE,
∵四边形ABCD是菱形,
∴DC=BC,
在△DCF和△BCE中,
,
∴△DCF≌△BCE(SAS),
∴DF=BE;
(2)如图1,作BE′⊥DA交DA的延长线于E′.
当点E运动至点E′时,DF=BE′,此时DF最小,
在Rt△ABE′中,AB=6,tan∠ABC=tan∠BAE′=2,
∴设AE′=x,则BE′=2x,
∴AB=x=6,x=6,
则AE′=6
∴DE′=6+6,DF=BE′=12,
时间t=6+6,
故答案为:6+6,12;
(3)∵CE=CF,
∴∠CEQ<90°,
①当∠EQP=90°时,如图2①,
∵∠ECF=∠BCD,BC=DC,EC=FC,
∴∠CBD=∠CEF,
∵∠BPC=∠EPQ,
∴∠BCP=∠EQP=90°,
∵AB=CD=6,tan∠ABC=tan∠ADC=2,
∴DE=6,
∴t=6秒;
②当∠EPQ=90°时,如图2②,
∵菱形ABCD的对角线AC⊥BD,
∴EC与AC重合,
∴DE=6,
∴t=6秒,
综上所述,t=6秒或6秒时,△EPQ是直角三角形.
【点睛】
此题是菱形与动点问题,考查菱形的性质,三角形全等的判定定理,等腰三角形的性质,最短路径问题,注意(3)中的直角没有明确时应分情况讨论解答.
21、(1)点P在直线上,说明见解析;(2).
【解析】
解:(1) 求:(1)直线可变为,
说明点P在直线上;
(2)在直线上取一点(0,1),直线可变为
则,
∴这两条平行线的距离为.
22、51.96米.
【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
【详解】
解:∵∠CBD=1°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=1.
在Rt△BDC中,
∴(米).
答:文峰塔的高度CD约为51.96米.
【点睛】
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
23、
【解析】
根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.
【详解】
解:+(﹣)﹣1+|1﹣|﹣1sin15°
=2﹣3+﹣1﹣1×
=2﹣3+﹣1﹣2
=﹣1.
【点睛】
此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.
24、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.
【解析】
(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;
(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;
(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.
【详解】
(1)如图①,延长CD至G,使得DG=BE,
∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,
∴△ABE≌△ADG,
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=45°,∠BAD=90°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,
又∵AF=AF,
∴△AEF≌△AEG,
∴EF=GF=DG+DF=BE+DF,
故答案为:BE+DF=EF;
(2)存在.
在等边三角形ABC中,AB=BC,∠ABC=60°,
如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.
由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,
∴△DBE是等边三角形,
∴DE=BD,
∴在△DCE中,DE<DC+CE=4+2=6,
∴当D、C、E三点共线时,DE存在最大值,且最大值为6,
∴BD的最大值为6;
(3)存在.
如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,
∵AB=BD,∠ABC=∠DBE,BC=BE,
∴△ABC≌△DBE,
∴DE=AC,
∵在等边三角形BCE中,EF⊥BC,
∴BF=BC=2,
∴EF=BF=×2=2,
以BC为直径作⊙F,则点D在⊙F上,连接DF,
∴DF=BC=×4=2,
∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.
【点睛】
本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.
25、⑴表格中依次填10,100.5,25,0.25,150.5,1;
⑵0.25,100;
⑶1000×(0.3+0.1+0.05)=450(名).
【解析】
(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
【详解】
解:填表如下:
(2)长方形ABCD的面积为0.25,样本容量是100;
提出这项建议的人数人.
【点睛】
本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
26、
【解析】
由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.
【详解】
=
=
=.
故答案为:.
【点睛】
本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.
27、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
分组
频数
频率
0.5~50.5
0.1
50.5~
20
0.2
100.5~150.5
200.5
30
0.3
200.5~250.5
10
0.1
海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份海北市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了定义,在直角坐标系中,已知点P,不等式组 的整数解有等内容,欢迎下载使用。
鞍山市重点中学2022年初中数学毕业考试模拟冲刺卷含解析: 这是一份鞍山市重点中学2022年初中数学毕业考试模拟冲刺卷含解析,共16页。试卷主要包含了-sin60°的倒数为,如图图形中是中心对称图形的是,若点P等内容,欢迎下载使用。
2021-2022学年贵港市重点中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2021-2022学年贵港市重点中学初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了下列函数是二次函数的是等内容,欢迎下载使用。