|试卷下载
搜索
    上传资料 赚现金
    2021-2022学年【新东方】江西省南昌市十校中考联考数学试卷含解析
    立即下载
    加入资料篮
    2021-2022学年【新东方】江西省南昌市十校中考联考数学试卷含解析01
    2021-2022学年【新东方】江西省南昌市十校中考联考数学试卷含解析02
    2021-2022学年【新东方】江西省南昌市十校中考联考数学试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年【新东方】江西省南昌市十校中考联考数学试卷含解析

    展开
    这是一份2021-2022学年【新东方】江西省南昌市十校中考联考数学试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中计算正确的是,比较4,,的大小,正确的是,已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为( )

    A.150° B.140° C.130° D.120°
    2.计算3–(–9)的结果是( )
    A.12 B.–12 C.6 D.–6
    3.如图是由四个相同的小正方体堆成的物体,它的正视图是(  )

    A. B. C. D.
    4.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )

    A. B. C. D.
    5.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为(  )

    A.(2,2),(3,2) B.(2,4),(3,1)
    C.(2,2),(3,1) D.(3,1),(2,2)
    6.下列各式中计算正确的是(  )
    A.x3•x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t
    7.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为 圆,则⊙O的“整点直线”共有( )条
    A.7 B.8 C.9 D.10
    8.比较4,,的大小,正确的是(  )
    A.4<< B.4<<
    C.<4< D.<<4
    9.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )

    ①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
    A.2个 B.3个 C.4个 D.5个
    10.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算的结果是__________.
    12.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.
    13.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.

    14.如图,为的直径,与相切于点,弦.若,则______.

    15.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.

    16.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
    17.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A,B两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的支援 C 粮仓,从 B 粮仓运出该粮仓存粮的支援 C 粮仓,这时 A,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)
    (1)A,B 两处粮仓原有存粮各多少吨?
    (2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?
    (3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时 35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到 B 地?请你说明理由.

    19.(5分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.

    (1)求△ABC的面积;
    (2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;
    (3)如果△APD是直角三角形,求PB的长.
    20.(8分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.
    21.(10分)问题提出
    (1)如图1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圆半径R的值;
    问题探究
    (2)如图2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,点D为边BC上的动点,连接AD以AD为直径作⊙O交边AB、AC分别于点E、F,接E、F,求EF的最小值;
    问题解决
    (3)如图3,在四边形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由.

    22.(10分)如图1,图2…、图m是边长均大于2的三角形、四边形、…、凸n边形.分别以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧…、n条弧.

    (1)图1中3条弧的弧长的和为   ,图2中4条弧的弧长的和为   ;
    (2)求图m中n条弧的弧长的和(用n表示).
    23.(12分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.

    (1)求抛物线的解析式.
    (2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
    (3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
    24.(14分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    试题分析:如图,延长DC到F,则
    ∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.
    ∴∠ACD=180°-∠ECF=140°.
    故选B.

    考点:1.平行线的性质;2.平角性质.
    2、A
    【解析】
    根据有理数的减法,即可解答.
    【详解】

    故选A.
    【点睛】
    本题考查了有理数的减法,解决本题的关键是熟记减去一个数等于加上这个数的相
    反数.
    3、A
    【解析】
    【分析】根据正视图是从物体的正面看得到的图形即可得.
    【详解】从正面看可得从左往右2列正方形的个数依次为2,1,
    如图所示:

    故选A.
    【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.
    4、C
    【解析】
    从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形,
    故选C.
    5、C
    【解析】
    直接利用位似图形的性质得出对应点坐标乘以得出即可.
    【详解】
    解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
    以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
    ∴端点的坐标为:(2,2),(3,1).
    故选C.
    【点睛】
    本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
    6、D
    【解析】
    试题解析:A、 原式计算错误,故本选项错误;
    B、 原式计算错误,故本选项错误;
    C、 原式计算错误,故本选项错误;
    D、 原式计算正确,故本选项正确;
    故选D.
    点睛:同底数幂相除,底数不变,指数相减.
    7、D
    【解析】
    试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.
    8、C
    【解析】
    根据4=<且4=>进行比较
    【详解】
    解:易得:4=<且4=>,
    所以<4<
    故选C.
    【点睛】
    本题主要考查开平方开立方运算。
    9、B
    【解析】
    根据图形给出的信息求出两车的出发时间,速度等即可解答.
    【详解】
    解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.
    ②慢车0时出发,快车2时出发,故正确.
    ③快车4个小时走了276km,可求出速度为69km/h,错误.
    ④慢车6个小时走了276km,可求出速度为46km/h,正确.
    ⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.
    ⑥快车2时出发,14时到达,用了12小时,错误.
    故答案选B.
    【点睛】
    本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.
    10、D
    【解析】
    如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式 来求 的长
    【详解】
    解:如图,连接OD.
    解:如图,连接OD.

    根据折叠的性质知,OB=DB.
    又∵OD=OB,
    ∴OD=OB=DB,即△ODB是等边三角形,
    ∴∠DOB=60°.
    ∵∠AOB=110°,
    ∴∠AOD=∠AOB-∠DOB=50°,
    ∴的长为 =5π.
    故选D.
    【点睛】
    本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.
    详解:原式
    故答案为:1.
    点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
    12、10%
    【解析】
    设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.
    【详解】
    设平均每次上调的百分率是x,
    依题意得,
    解得:,(不合题意,舍去).
    答:平均每次上调的百分率为10%.
    故答案是:10%.
    【点睛】
    此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    13、-4
    【解析】
    :由反比例函数解析式可知:系数,
    ∵S△AOB=2即,∴;
    又由双曲线在二、四象限k<0,∴k=-4
    14、1
    【解析】
    利用切线的性质得,利用直角三角形两锐角互余可得,再根据平行线的性质得到,,然后根据等腰三角形的性质求出的度数即可.
    【详解】
    ∵与相切于点,
    ∴AC⊥AB,
    ∴,
    ∴,
    ∵,
    ∴,,
    ∵,
    ∴,
    ∴.
    故答案为1.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    15、1
    【解析】
    试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1.
    16、2或2.
    【解析】
    本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
    【详解】
    解:

    当点在线段的延长线上时,如图3所示.
    过点作于,
    是正方形的对角线,
    ,

    ,
    在中,由勾股定理,得:
    ,
    在和中,,
    ,



    当点在线段上时,如图4所示.
    过作于.
    是正方形的对角线,




    在中,由勾股定理,得:

    在和中,,
    ,



    故答案为或.
    【点睛】
    本题主要考查了勾股定理和三角形全等的证明.
    17、17
    【解析】
    先利用完全平方公式展开,然后再求和.
    【详解】
    根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
    【点睛】
    (1)完全平方公式:.
    (2)平方差公式:(a+b)(a-b)=.
    (3)常用等价变形:
    ,
    ,
    .

    三、解答题(共7小题,满分69分)
    18、(1)A、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.
    【解析】
    (1)由题意可知要求A,B两处粮仓原有存粮各多少吨需找等量关系,即A处存粮+B处存粮=450吨,A处存粮的五分之二=B处存粮的五分之三,据等量关系列方程组求解即可;
    (2)分别求出A处和B处支援C处的粮食,将其加起来与200吨比较即可;
    (3)由题意可知由已知可得△ABC中∠A=26°∠ACB=90°且AB=1Km,sin∠BAC=,要求BC的长,可以运用三角函数解直角三角形.
    【详解】
    (1)设A,B两处粮仓原有存粮x,y吨
    根据题意得:
    解得:x=270,y=1.
    答:A,B两处粮仓原有存粮分别是270,1吨.
    (2)A粮仓支援C粮仓的粮食是×270=162(吨),
    B粮仓支援C粮仓的粮食是×1=72(吨),
    A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).
    ∵234>200,
    ∴此次调拨能满足C粮仓需求.
    (3)如图,

    根据题意知:∠A=26°,AB=1千米,∠ACB=90°.
    在Rt△ABC中,sin∠BAC=,
    ∴BC=AB•sin∠BAC=1×0.44=79.2.
    ∵此车最多可行驶4×35=140(千米)<2×79.2,
    ∴小王途中须加油才能安全回到B地.
    【点睛】
    求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
    19、(1)12(2)y=(0<x<5)(3)或
    【解析】
    试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;
    (2)先证明△BPD∽△BAC,得到=,再根据 ,代入相关的量即可得;
    (3)分情况进行讨论即可得.
    试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB= ,
    ∵cosB=,AB=5,∴BH=4,∴AH=3,
    ∵AB=AC,∴BC=2BH=8,
    ∴S△ABC=×8×3=12

    (2)∵PB=PD,∴∠B=∠PDB,
    ∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,
    ∴△BPD∽△BAC,
    ∴ ,
    即,
    解得=,
    ∴ ,
    ∴ ,
    解得y=(0<x<5);
    (3)∠APD<90°,
    过C作CE⊥AB交BA延长线于E,可得cos∠CAE= ,
    ①当∠ADP=90°时,
    cos∠APD=cos∠CAE=,
    即 ,
    解得x=;
    ②当∠PAD=90°时,

    解得x=,
    综上所述,PB=或.
    【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.
    20、(1);(2).
    【解析】
    (1)直接利用概率公式计算;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.
    【详解】
    解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=;
    (2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示
    画树状图为:

    共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,
    所以该纽能够翻译上述两种语言的概率= .
    【点睛】
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
    21、(1)△ABC的外接圆的R为1;(2)EF的最小值为2;(3)存在,AC的最小值为9.
    【解析】
    (1)如图1中,作△ABC的外接圆,连接OA,OC.证明∠AOC=90°即可解决问题;
    (2)如图2中,作AH⊥BC于H.当直径AD的值一定时,EF的值也确定,根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短;
    (3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.证明EC=AC,构建二次函数求出EC的最小值即可解决问题.
    【详解】
    解:(1)如图1中,作△ABC的外接圆,连接OA,OC.

    ∵∠B=180°﹣∠BAC﹣∠ACB=180°﹣75°﹣10°=45°,
    又∵∠AOC=2∠B,
    ∴∠AOC=90°,
    ∴AC=1,
    ∴OA=OC=1,
    ∴△ABC的外接圆的R为1.
    (2)如图2中,作AH⊥BC于H.

    ∵AC=8,∠C=45°,
    ∴AH=AC•sin45°=8×=8,
    ∵∠BAC=10°,
    ∴当直径AD的值一定时,EF的值也确定,
    根据垂线段最短可知当AD与AH重合时,AD的值最短,此时EF的值也最短,
    如图2﹣1中,当AD⊥BC时,作OH⊥EF于H,连接OE,OF.

    ∵∠EOF=2∠BAC=20°,OE=OF,OH⊥EF,
    ∴EH=HF,∠OEF=∠OFE=30°,
    ∴EH=OF•cos30°=4•=1,
    ∴EF=2EH=2,
    ∴EF的最小值为2.
    (3)如图3中,将△ADC绕点A顺时针旋转90°得到△ABE,连接EC,作EH⊥CB交CB的延长线于H,设BE=CD=x.

    ∵∠AE=AC,∠CAE=90°,
    ∴EC=AC,∠AEC=∠ACE=45°,
    ∴EC的值最小时,AC的值最小,
    ∵∠BCD=∠ACB+∠ACD=∠ACB+∠AEB=30°,
    ∴∠∠BEC+∠BCE=10°,
    ∴∠EBC=20°,
    ∴∠EBH=10°,
    ∴∠BEH=30°,
    ∴BH=x,EH=x,
    ∵CD+BC=2,CD=x,
    ∴BC=2﹣x
    ∴EC2=EH2+CH2=(x)2+=x2﹣2x+432,
    ∵a=1>0,
    ∴当x=﹣=1时,EC的长最小,
    此时EC=18,
    ∴AC=EC=9,
    ∴AC的最小值为9.
    【点睛】
    本题属于圆综合题,考查了圆周角定理,勾股定理,解直角三角形,二次函数的性质等知识,解题的关键是学会添加常用辅助线,学会构建二次函数解决最值问题,属于中考压轴题.
    22、 (1)π, 2π;(2)(n﹣2)π.
    【解析】
    (1)利用弧长公式和三角形和四边形的内角和公式代入计算;
    (2)利用多边形的内角和公式和弧长公式计算.
    【详解】
    (1)利用弧长公式可得
    =π,
    因为n1+n2+n3=180°.
    同理,四边形的==2π,
    因为四边形的内角和为360度;
    (2)n条弧==(n﹣2)π.
    【点睛】
    本题考查了多边形的内角和定理以及扇形的面积公式和弧长的计算公式,理解公式是关键.
    23、(1)y=﹣x2+2x+3;(2)当t=或t=时,△PCQ为直角三角形;(3)当t=2时,△ACQ的面积最大,最大值是1.
    【解析】
    (1)根据抛物线的对称轴与矩形的性质可得点A的坐标,根据待定系数法可得抛物线的解析式;
    (2)先根据勾股定理可得CE,再分两种情况:当∠QPC=90°时;当∠PQC=90°时;讨论可得△PCQ为直角三角形时t的值;
    (3)根据待定系数法可得直线AC的解析式,根据S△ACQ=S△AFQ+S△CPQ可得S△ACQ==﹣(t﹣2)2+1,依此即可求解.
    【详解】
    解:(1)∵抛物线的对称轴为x=1,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4),点A在DE上,
    ∴点A坐标为(1,4),
    设抛物线的解析式为y=a(x﹣1)2+4,把C(3,0)代入抛物线的解析式,可得a(3﹣1)2+4=0,解得a=﹣1.
    故抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
    (2)依题意有:OC=3,OE=4,
    ∴CE===5,
    当∠QPC=90°时,
    ∵cos∠QPC=,
    ∴,解得t=;
    当∠PQC=90°时,
    ∵cos∠QCP=,
    ∴,解得t=.
    ∴当t=或 t=时,△PCQ为直角三角形;
    (3)∵A(1,4),C(3,0),
    设直线AC的解析式为y=kx+b,则有:
    ,解得.故直线AC的解析式为y=﹣2x+2.
    ∵P(1,4﹣t),将y=4﹣t代入y=﹣2x+2中,得x=1+,
    ∴Q点的横坐标为1+,将x=1+ 代入y=﹣(x﹣1)2+4 中,得y=4﹣.
    ∴Q点的纵坐标为4﹣,
    ∴QF=(4﹣)﹣(4﹣t)=t﹣,
    ∴S△ACQ =S△AFQ +S△CFQ
    =FQ•AG+FQ•DG,
    =FQ(AG+DG),
    =FQ•AD,
    =×2(t﹣),
    =﹣(t﹣2)2+1,
    ∴当t=2时,△ACQ的面积最大,最大值是1.
    【点睛】
    考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,矩形的性质,待定系数法求抛物线的解析式,待定系数法求直线的解析式,勾股定理,锐角三角函数,三角形面积,二次函数的最值,方程思想以及分类思想的运用.
    24、(1);(2)20分钟.
    【解析】
    (1)材料加热时,设y=ax+15(a≠0),
    由题意得60=5a+15,
    解得a=9,
    则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).
    停止加热时,设y=(k≠0),
    由题意得60=,
    解得k=300,
    则停止加热进行操作时y与x的函数关系式为y=(x≥5);
    (2)把y=15代入y=,得x=20,
    因此从开始加热到停止操作,共经历了20分钟.
    答:从开始加热到停止操作,共经历了20分钟.

    相关试卷

    2023-2024学年江西省南昌市十校联考八年级(上)期中数学试卷(含解析): 这是一份2023-2024学年江西省南昌市十校联考八年级(上)期中数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江西省南昌市十校联考八年级(上)期中数学试卷(含解析): 这是一份2022-2023学年江西省南昌市十校联考八年级(上)期中数学试卷(含解析),共21页。试卷主要包含了0分,0分),【答案】C,【答案】,【答案】125°等内容,欢迎下载使用。

    江西省南昌市十四校2021-2022学年中考数学五模试卷含解析: 这是一份江西省南昌市十四校2021-2022学年中考数学五模试卷含解析,共21页。试卷主要包含了关于x的方程,已知二次函数y=a等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map