【全国百强校首发】江西省临川第一中学2022年中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )
A. B. C. D.
2.下列图形中,周长不是32 m的图形是( )
A. B. C. D.
3.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于( )
A. B. C. D.
4.当 a>0 时,下列关于幂的运算正确的是( )
A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2 D.(a2)3=a5
5.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正
确的是( )
A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x1
6.观察下列图形,其中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
7.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为( )
A.7 B.8 C.9 D.10
8.如图,中,,,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )
A.4 B.5 C.6 D.7
9.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是( )
A.3 B.3.5 C.4 D.5
10.下列各数中,最小的数是( )
A.﹣4 B.3 C.0 D.﹣2
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于____;
(2)在△ABC的内部有一点P,满足S△PABS△PBCS△PCA =1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)_______
12.如图,在四边形ABCD中,点E、F分别是边AB、AD的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC的度数为_____.
13.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.
14.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长度为_____
15.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
16.化简二次根式的正确结果是_____.
17.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.
三、解答题(共7小题,满分69分)
18.(10分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°. 解方程: =1﹣
19.(5分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.
20.(8分)已知,抛物线y=ax2+c过点(-2,2)和点(4,5),点F(0,2)是y 轴上的定点,点B是抛物线上除顶点外的任意一点,直线l:y=kx+b经过点B、F且交x轴于点A.
(1)求抛物线的解析式;
(2)①如图1,过点B作BC⊥x轴于点C,连接FC,求证:FC平分∠BFO;
②当k= 时,点F是线段AB的中点;
(3)如图2, M(3,6)是抛物线内部一点,在抛物线上是否存在点B,使△MBF的周长最小?若存在,求出这个最小值及直线l的解析式;若不存在,请说明理由.
21.(10分)某厂按用户的月需求量(件)完成一种产品的生产,其中.每件的售价为18万元,每件的成本(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量(件)成反比.经市场调研发现,月需求量与月份(为整数,)符合关系式(为常数),且得到了表中的数据.
月份(月)
1
2
成本(万元/件)
11
12
需求量(件/月)
120
100
(1)求与满足的关系式,请说明一件产品的利润能否是12万元;
(2)求,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第个月和第个月的利润相差最大,求.
22.(10分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.
23.(12分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,,)
24.(14分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=->0,即可进行判断.
【详解】
点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,
∴x=ax2+bx+c,
∴ax2+(b-1)x+c=0;
由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,
∴方程ax2+(b-1)x+c=0有两个正实数根.
∴函数y=ax2+(b-1)x+c与x轴有两个交点,
又∵->0,a>0
∴-=-+>0
∴函数y=ax2+(b-1)x+c的对称轴x=->0,
∴A符合条件,
故选A.
2、B
【解析】
根据所给图形,分别计算出它们的周长,然后判断各选项即可.
【详解】
A. L=(6+10)×2=32,其周长为32.
B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.
C. L=(6+10)×2=32,其周长为32.
D. L=(6+10)×2=32,其周长为32.
采用排除法即可选出B
故选B.
【点睛】
此题考查多边形的周长,解题在于掌握计算公式.
3、A
【解析】
连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.
【详解】
解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,
∴根据勾股定理得:AM=
=
=4,
又S△AMC=MN•AC=AM•MC,
∴MN=
= .
故选A.
【点睛】
综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.
4、A
【解析】
直接利用零指数幂的性质以及负指数幂的性质、幂的乘方运算法则分别化简得出答案.
【详解】
A选项:a0=1,正确;
B选项:a﹣1= ,故此选项错误;
C选项:(﹣a)2=a2,故此选项错误;
D选项:(a2)3=a6,故此选项错误;
故选A.
【点睛】
考查了零指数幂的性质以及负指数幂的性质、幂的乘方运算, 正确掌握相关运算法则是解题关键.
5、B
【解析】
根据的图象上的三点,把三点代入可以得到x1=﹣ ,x1= ,x3=,在根据a的大小即可解题
【详解】
解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,
∴x1=﹣ ,x1= ,x3= ,
∵a<1,
∴a﹣1<0,
∴x1>x3>x1.
故选B.
【点睛】
此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断
6、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;
B、是轴对称图形,不是中心对称图形.故本选项错误;
C、是轴对称图形,也是中心对称图形.故本选项正确;
D、既不是轴对称图形,也不是中心对称图形.故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
7、B
【解析】
根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.
【详解】
在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,
∴AC===10,
∵DE是△ABC的中位线,
∴DF∥BM,DE=BC=3,
∴∠EFC=∠FCM,
∵∠FCE=∠FCM,
∴∠EFC=∠ECF,
∴EC=EF=AC=5,
∴DF=DE+EF=3+5=2.
故选B.
8、B
【解析】
先利用已知证明,从而得出,求出BD的长度,最后利用求解即可.
【详解】
故选:B.
【点睛】
本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键.
9、A
【解析】
根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
【详解】
解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
AP≥AB,
AP≥3.5,
故选:A.
【点睛】
本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
10、A
【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
【详解】
根据有理数比较大小的方法,可得
﹣4<﹣2<0<3
∴各数中,最小的数是﹣4
故选:A
【点睛】
本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
二、填空题(共7小题,每小题3分,满分21分)
11、; 答案见解析.
【解析】
(1)AB==.
故答案为.
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
理由:平行四边形ABME的面积:平行四边形CDNB的面积:平行四边形DEMG的面积=1:2:1,△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,∴S△PAB:S△PBC:S△PCA=1:2:1.
12、140°
【解析】
如图,连接BD,∵点E、F分别是边AB、AD的中点,
∴EF是△ABD的中位线,
∴EF∥BD,BD=2EF=12,
∴∠ADB=∠AFE=50°,
∵BC=15,CD=9,BD=12,
∴BC2=225,CD2=81,BD2=144,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴∠ADC=∠ADB+∠BDC=50°+90°=140°.
故答案为:140°.
13、2
【解析】
试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.
在直角△OCE中,
则AE=OA−OE=5−3=2.
故答案为2.
14、
【解析】
分析题意,如图所示,连接BF,由翻折变换可知,BF⊥AE,BE=EF,由点E是BC的中点可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的长度即可
【详解】
如图,连接BF.
∵△AEF是由△ABE沿AE折叠得到的,
∴BF⊥AE,BE=EF.
∵BC=6,点E为BC的中点,
∴BE=EC=EF=3
根据勾股定理有AE=AB+BE
代入数据求得AE=5
根据三角形的面积公式
得BH=
即可得BF=
由FE=BE=EC,
可得∠BFC=90°
再由勾股定理有BC-BF=CF
代入数据求得CF=
故答案为
【点睛】
此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质
15、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
【解析】
让横坐标、纵坐标为负数即可.
【详解】
在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
16、﹣a
【解析】
, .
.
17、50°
【解析】
根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
【详解】
解:∵AB=AC,∠BAC=80°,
∴∠B=∠C=(180°﹣80°)÷2=50°;
∵AD∥BC,
∴∠DAC=∠C=50°,
故答案为50°.
【点睛】
本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.
三、解答题(共7小题,满分69分)
18、(1)﹣1;(2)x=﹣1是原方程的根.
【解析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;
(2)直接去分母再解方程得出答案.
【详解】
(1)原式=﹣2﹣1+2×
=﹣﹣1+
=﹣1;
(2)去分母得:3x=x﹣3+1,
解得:x=﹣1,
检验:当x=﹣1时,x﹣3≠0,
故x=﹣1是原方程的根.
【点睛】
此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.
19、 (1)证明见解析;(2).
【解析】
(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;
(2)根据含30°的直角三角形的性质、正切的定义计算即可.
【详解】
(1)∵AB是⊙O直径,BC⊥AB,
∴BC是⊙O的切线,
∵CD切⊙O于点D,
∴BC=CD;
(2)连接BD,
∵BC=CD,∠C=60°,
∴△BCD是等边三角形,
∴BD=BC=3,∠CBD=60°,
∴∠ABD=30°,
∵AB是⊙O直径,
∴∠ADB=90°,
∴AD=BD•tan∠ABD=.
【点睛】
本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
20、(1);(2)①见解析;②;(3)存在点B,使△MBF的周长最小.△MBF周长的最小值为11,直线l的解析式为.
【解析】
(1)用待定系数法将已知两点的坐标代入抛物线解析式即可解答.
(2)①由于BC∥y轴,容易看出∠OFC=∠BCF,想证明∠BFC=∠OFC,可转化为求证∠BFC=∠BCF,根据“等边对等角”,也就是求证BC=BF,可作BD⊥y轴于点D,设B(m,),通过勾股定理用表示出的长度,与相等,即可证明.
②用表示出点的坐标,运用勾股定理表示出的长度,令,解关于的一元二次方程即可.
(3)求折线或者三角形周长的最小值问题往往需要将某些线段代换转化到一条直线上,再通过“两点之间线段最短”或者“垂线段最短”等定理寻找最值.本题可过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F,通过第(2)问的结论
将△MBF的边转化为,可以发现,当点运动到位置时,△MBF周长取得最小值,根据求平面直角坐标系里任意两点之间的距离的方法代入点与的坐标求出的长度,再加上即是△MBF周长的最小值;将点的横坐标代入二次函数求出,再联立与的坐标求出的解析式即可.
【详解】
(1)解:将点(-2,2)和(4,5)分别代入,得:
解得:
∴抛物线的解析式为:.
(2)①证明:过点B作BD⊥y轴于点D,
设B(m,),
∵BC⊥x轴,BD⊥y轴,F(0,2)
∴BC=,
BD=|m|,DF=
∴BC=BF
∴∠BFC=∠BCF
又BC∥y轴,∴∠OFC=∠BCF
∴∠BFC=∠OFC
∴FC平分∠BFO .
②
(说明:写一个给1分)
(3)存在点B,使△MBF的周长最小.
过点M作MN⊥x轴于点N,交抛物线于点B1,过点B作BE⊥x轴于点E,连接B1F
由(2)知B1F=B1N,BF=BE
∴△MB1F的周长=MF+MB1+B1F=MF+MB1+B1N=MF+MN
△MBF的周长=MF+MB+BF=MF+MB+BE
根据垂线段最短可知:MN<MB+BE
∴当点B在点B1处时,△MBF的周长最小
∵M(3,6),F(0,2)
∴,MN=6
∴△MBF周长的最小值=MF+MN=5+6=11
将x=3代入,得:
∴B1(3,)
将F(0,2)和B1(3,)代入y=kx+b,得:
,
解得:
∴此时直线l的解析式为:.
【点睛】
本题综合考查了二次函数与一次函数的图象与性质,等腰三角形的性质,动点与最值问题等,熟练掌握各个知识点,结合图象作出合理辅助线,进行适当的转化是解答关键.
21、 (1),不可能;(2)不存在;(3)1或11.
【解析】
试题分析:(1)根据每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,结合表格,用待定系数法求y与x之间的函数关系式,再列方程求解,检验所得结果是还符合题意;(2)将表格中的n,对应的x值,代入到,求出k,根据某个月既无盈利也不亏损,得到一个关于n的一元二次方程,判断根的情况;(3)用含m的代数式表示出第m个月,第(m+1)个月的利润,再对它们的差的情况讨论.
试题解析:(1)由题意设,由表中数据,得
解得∴.
由题意,若,则.
∵x>0,∴.
∴不可能.
(2)将n=1,x=120代入,得
120=2-2k+9k+27.解得k=13.
将n=2,x=100代入也符合.
∴k=13.
由题意,得18=6+,求得x=50.
∴50=,即.
∵,∴方程无实数根.
∴不存在.
(3)第m个月的利润为w==;
∴第(m+1)个月的利润为
W′=.
若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
∴m=1或11.
考点:待定系数法,一元二次方程根的判别式,二次函数的性质,二次函数的应用.
22、65°
【解析】
∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,
∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.
∵AP平分∠EAB,
∴∠PAB=12∠EAB.
同理可得,∠ABP=∠ABC.
∵∠P+∠PAB+∠PBA=180°,
∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.
23、改善后滑板会加长1.1米.
【解析】
在Rt△ABC中,根据AB=4米,∠ABC=45°,求出AC的长度,然后在Rt△ADC中,解直角三角形求AD的长度,用AD-AB即可求出滑板加长的长度.
【详解】
解:在Rt△ABC中,AC=AB•sin45°=4×=,
在Rt△ADC中,AD=2AC=,
AD-AB=-4≈1.1.
答:改善后滑板会加长1.1米.
【点睛】
本题主要考查了解直角三角形的应用,利用这两个直角三角形公共的直角边解直角三角形是解答本题的关键.
24、(1)y=2x,OA=,
(2)是一个定值,,
(3)当时,E点只有1个,当时,E点有2个。
【解析】(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=.
(2)是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…(5分),
∴,
当点P、Q在抛物线和直线上不同位置时,同理可得.①①
如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴,
∴OF=,
∴点F(,0),
设点B(x,),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴,
即,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
k=,b=10,
∴,
∴,
∴(舍去),,
∴B(6,2),
∴AB=5
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
设OE=x,则AE=﹣x (),
由△ABE∽△OED得,
∴
∴()
∴顶点为(,)
如答图3,
当时,OE=x=,此时E点有1个;
当时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当时,E点只有1个
当时,E点有2个
2022年【全国百强校首发】河南师范大附属中学中考数学五模试卷含解析: 这是一份2022年【全国百强校首发】河南师范大附属中学中考数学五模试卷含解析,共22页。试卷主要包含了如果,那么代数式的值是等内容,欢迎下载使用。
2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析: 这是一份2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析,共17页。试卷主要包含了已知下列命题,单项式2a3b的次数是等内容,欢迎下载使用。
2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析: 这是一份2022届【全国百强校首发】四川省阆中学中学中考冲刺卷数学试题含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=3,的绝对值是等内容,欢迎下载使用。