|试卷下载
终身会员
搜索
    上传资料 赚现金
    【全国百强校首发】河南师范大附属中学2021-2022学年中考数学押题试卷含解析
    立即下载
    加入资料篮
    【全国百强校首发】河南师范大附属中学2021-2022学年中考数学押题试卷含解析01
    【全国百强校首发】河南师范大附属中学2021-2022学年中考数学押题试卷含解析02
    【全国百强校首发】河南师范大附属中学2021-2022学年中考数学押题试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【全国百强校首发】河南师范大附属中学2021-2022学年中考数学押题试卷含解析

    展开
    这是一份【全国百强校首发】河南师范大附属中学2021-2022学年中考数学押题试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,估计的值在,下列计算正确的是,- 的绝对值是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.绿豆在相同条件下的发芽试验,结果如下表所示:
    每批粒数n
    100
    300
    400
    600
    1000
    2000
    3000
    发芽的粒数m
    96
    282
    382
    570
    948
    1904
    2850
    发芽的频率
    0.960
    0.940
    0.955
    0.950
    0.948
    0.952
    0.950
    下面有三个推断:
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
    ②根据上表,估计绿豆发芽的概率是0.95;
    ③若n为4000,估计绿豆发芽的粒数大约为3800粒.
    其中推断合理的是(  )
    A.① B.①② C.①③ D.②③
    2.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0 (t为实数)在l
    A.-5-5
    3.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )

    A.10 B.9 C.8 D.6
    4.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是
    A.科比罚球投篮2次,一定全部命中
    B.科比罚球投篮2次,不一定全部命中
    C.科比罚球投篮1次,命中的可能性较大
    D.科比罚球投篮1次,不命中的可能性较小
    5.已知am=2,an=3,则a3m+2n的值是(  )
    A.24 B.36 C.72 D.6
    6.估计的值在( )
    A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间
    7.下列计算正确的是(  )
    A.(﹣2a)2=2a2 B.a6÷a3=a2
    C.﹣2(a﹣1)=2﹣2a D.a•a2=a2
    8.下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是(  )
    A.y=(x﹣2)2+1 B.y=(x+2)2+1
    C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3
    9.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=(  )

    A.54° B.64° C.27° D.37°
    10.- 的绝对值是( )
    A.-4 B. C.4 D.0.4
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算:=________.
    12.某小区购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,求银杏树和玉兰树的单价.设银杏树的单价为x元,可列方程为______.
    13.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.

    14.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.






    7
    8
    8
    7
    s2
    1
    1.2
    0.9
    1.8

    15.菱形ABCD中,∠A=60°,AB=9,点P是菱形ABCD内一点,PB=PD=3,则AP的长为_____.
    16.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.

    17.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.

    三、解答题(共7小题,满分69分)
    18.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)

    19.(5分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.

    20.(8分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
    (1)求抛物y=x2+bx+c线的解析式.
    (2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
    (3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).

    21.(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.

    (1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;
    (2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;
    (3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.
    22.(10分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)2018
    23.(12分)解不等式组,并将解集在数轴上表示出来.

    24.(14分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”
    (特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=   ;
    ②若∠BAC=90°(如图3),BC=6,AD=   ;
    (猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;
    (拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    ①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
    【详解】
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
    ②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
    ③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
    故选D.
    【点睛】
    本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    2、B
    【解析】
    先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.
    【详解】
    ∵ 抛物线y=-x2+mx的对称轴为直线x=2,
    ∴,
    解之:m=4,
    ∴y=-x2+4x,
    当x=2时,y=-4+8=4,
    ∴顶点坐标为(2,4),
    ∵ 关于x的-元二次方程-x2+mx-t=0 (t为实数)在l 当x=1时,y=-1+4=3,
    当x=2时,y=-4+8=4,
    ∴ 3 故选:B
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
    3、A
    【解析】
    过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.
    解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.

    设OA=a,BF=b,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a, a).
    ∵点A在反比例函数y=的图象上,
    ∴a×a=a2=12,
    解得:a=5,或a=﹣5(舍去).
    ∴AM=8,OM=1.
    ∵四边形OACB是菱形,
    ∴OA=OB=10,BC∥OA,
    ∴∠FBN=∠AOB.
    在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,
    ∴FN=BF•sin∠FBN=b,BN==b,
    ∴点F的坐标为(10+b,b).
    ∵点F在反比例函数y=的图象上,
    ∴(10+b)×b=12,
    S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10
    故选A.
    “点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    4、A
    【解析】
    试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。因此。
    A、科比罚球投篮2次,不一定全部命中,故本选项正确;
    B、科比罚球投篮2次,不一定全部命中,正确,故本选项错误;
    C、∵科比罚球投篮的命中率大约是83.3%,
    ∴科比罚球投篮1次,命中的可能性较大,正确,故本选项错误;
    D、科比罚球投篮1次,不命中的可能性较小,正确,故本选项错误。
    故选A。 
    5、C
    【解析】
    试题解析:∵am=2,an=3,
    ∴a3m+2n
    =a3m•a2n
    =(am)3•(an)2
    =23×32
    =8×9
    =1.
    故选C.
    6、B
    【解析】
    ∵9<11<16,
    ∴,

    故选B.
    7、C
    【解析】
    解:选项A,原式=;
    选项B,原式=a3;
    选项C,原式=-2a+2=2-2a;
    选项D, 原式=
    故选C
    8、C
    【解析】
    试题分析:根据顶点式,即A、C两个选项的对称轴都为,再将(0,1)代入,符合的式子为C选项
    考点:二次函数的顶点式、对称轴
    点评:本题考查学生对二次函数顶点式的掌握,难度较小,二次函数的顶点式解析式为,顶点坐标为,对称轴为
    9、C
    【解析】
    由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.
    【详解】
    解:∵∠AOC=126°,
    ∴∠BOC=180°﹣∠AOC=54°,
    ∵∠CDB=∠BOC=27°
    故选:C.
    【点睛】
    此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
    10、B
    【解析】
    直接用绝对值的意义求解.
    【详解】
    −的绝对值是.
    故选B.
    【点睛】
    此题是绝对值题,掌握绝对值的意义是解本题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    根据异分母分式加减法法则计算即可.
    【详解】
    原式.
    故答案为:.
    【点睛】
    本题考查了分式的加减,关键是掌握分式加减的计算法则.
    12、
    【解析】
    根据银杏树的单价为x元,则玉兰树的单价为1.5x元,根据“某小区购买了银杏树和玉兰树共1棵”列出方程即可.
    【详解】
    设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意,得:
    1.
    故答案为:1.
    【点睛】
    本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.
    13、
    【解析】
    试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣1,
    故答案为﹣1.
    考点:正数和负数
    14、丙
    【解析】
    先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.
    【详解】
    因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,
    所以丙组的成绩比较稳定,
    所以丙组的成绩较好且状态稳定,应选的组是丙组.
    故答案为丙.
    【点睛】
    本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.
    15、3或6
    【解析】
    分成P在OA上和P在OC上两种情况进行讨论,根据△ABD是等边三角形,即可求得OA的长度,在直角△OBP中利用勾股定理求得OP的长,则AP即可求得.
    【详解】
    设AC和BE相交于点O.

    当P在OA上时,
    ∵AB=AD,∠A=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=9,OB=OD=BD=.
    则AO=.
    在直角△OBP中,OP=.
    则AP=OA-OP-;
    当P在OC上时,AP=OA+OP=.
    故答案是:3或6.
    【点睛】
    本题考查了菱形的性质,注意到P在AC上,应分两种情况进行讨论是解题的关键.
    16、
    【解析】
    由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.
    【详解】
    详解:∵正方形ABCD,
    ∴∠B=90°.
    ∵AB=12,BM=5,
    ∴AM=1.
    ∵ME⊥AM,
    ∴∠AME=90°=∠B.
    ∵∠BAE=90°,
    ∴∠BAM+∠MAE=∠MAE+∠E,
    ∴∠BAM=∠E,
    ∴△ABM∽△EMA,
    ∴=,即=,
    ∴AE=,
    ∴DE=AE﹣AD=﹣12=.
    故答案为.
    【点睛】
    本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.
    17、
    【解析】
    首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.
    【详解】
    解:
    连接AC

    AB2=32+12=10,BC2=22+12=5,AC2=22+12=5,
    ∴AC=CB,BC2+AC2=AB2,
    ∴∠BCA=90°,
    ∴∠ABC=45°,
    ∴∠ABC的正弦值为.
    故答案为:.
    【点睛】
    此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.

    三、解答题(共7小题,满分69分)
    18、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是 4.4 米.
    【解析】
    (1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;
    (2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
    【详解】
    (1 )由题意可得:cos∠FHE=,则∠FHE=60°;
    (2)延长 FE 交 CB 的延长线于 M,过 A 作 AG⊥FM 于 G,

    在 Rt△ABC 中,tan∠ACB=,
    ∴AB=BC•tan75°=0.60×3.732=2.2392,
    ∴GM=AB=2.2392,
    在 Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=,
    ∴sin60°==,
    ∴FG≈2.17(m),
    ∴FM=FG+GM≈4.4(米),
    答:篮板顶端 F 到地面的距离是 4.4 米.
    【点睛】
    本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.
    19、(1);(2)1<x<1.
    【解析】
    (1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
    (2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
    【详解】
    解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
    ∴n=﹣1+5,解得:n=1,
    ∴点A的坐标为(1,1).
    ∵反比例函数y=(k≠0)过点A(1,1),
    ∴k=1×1=1,
    ∴反比例函数的解析式为y=.
    联立,解得:或,
    ∴点B的坐标为(1,1).
    (2)观察函数图象,发现:
    当1<x<1.时,反比例函数图象在一次函数图象下方,
    ∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
    【点睛】
    本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
    20、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
    【解析】
    (1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
    (2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
    (3)由题得出tanBAO=,分情况讨论求得F,H坐标.
    【详解】
    (1)把点、代入得,
    解得,,
    ∴抛物线的解析式为.
    (2)由得,∴顶点的坐标为,
    把代入得解得,∴直线解析式为,
    设点,代入得,∴得,
    设点,代入得,∴得,
    由于直线与轴、轴分别交于点、
    ∴易得、,
    ∴,
    ∴,∵点在直线上,
    ∴,
    ∴,即,
    ∵,
    ∴以点为圆心,半径长为4的圆与直线相离.
    (3)点、的坐标分别为、或、或、.
    C(-1,-1),A(0,6),B(1,3)
    可得tanBAO=,
    情况1:tanCF1M= = , CF1=9,
    M F1=6,H1F1=5, F1(8,8),H1(3,3);
    情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
    情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
    【点睛】
    本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.
    21、(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
    【解析】
    (1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;
    (2)利用待定系数法分别求出两个函数解析式,从而得出答案;
    (3)分0≤t<20、t=20和20≤t≤30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.
    【详解】
    解:(1)由图表数据观察可知y1与t之间是二次函数关系,
    设y1=a(t﹣0)(t﹣30)
    再代入t=5,y1=25可得a=﹣
    ∴y1=﹣t(t﹣30)(0≤t≤30)
    (2)由函数图象可知y2与t之间是分段的一次函数由图象可知:
    0≤t<20时,y2=2t,当20≤t≤30时,y2=﹣4t+120,
    ∴y2=,
    (3)当0≤t<20时,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2 ,
    可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,
    当20≤t≤30时,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2 ,
    可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,
    故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.
    22、-1
    【解析】
    原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.
    【详解】
    解:原式=﹣4+1+1+1=﹣1.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    23、原不等式组的解集为﹣4<x≤1,在数轴上表示见解析.
    【解析】
    分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案
    详解:解不等式①,得x>﹣4,
    解不等式②,得x≤1,
    把不等式①②的解集在数轴上表示如图

    原不等式组的解集为﹣4<x≤1.
    点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键.
    24、(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;
    【解析】
    (1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;
    ②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.
    【详解】
    (1)①∵△ABC是等边三角形,BC=1,
    ∴AB=AC=1,∠BAC=60,
    ∴AB′=AC′=1,∠B′AC′=120°.
    ∵AD为等腰△AB′C′的中线,
    ∴AD⊥B′C′,∠C′=30°,
    ∴∠ADC′=90°.
    在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,
    ∴AD=AC′=2.
    ②∵∠BAC=90°,
    ∴∠B′AC′=90°.
    在△ABC和△AB′C′中,,
    ∴△ABC≌△AB′C′(SAS),
    ∴B′C′=BC=6,
    ∴AD=B′C′=3.
    故答案为:①2;②3.
    (2)AD=BC.
    证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.
    ∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,
    ∴∠BAC=∠AB′E.
    在△BAC和△AB′E中,,
    ∴△BAC≌△AB′E(SAS),
    ∴BC=AE.
    ∵AD=AE,
    ∴AD=BC.
    (3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF⊥BC于点F.
    ∵PB=PC,PF⊥BC,
    ∴PF为△PBC的中位线,
    ∴PF=AD=3.
    在Rt△BPF中,∠BFP=90°,PB=5,PF=3,
    ∴BF==1,
    ∴BC=2BF=4.

    【点睛】
    本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC;(3)利用(2)的结论结合勾股定理求出BF的长度.

    相关试卷

    2022年【全国百强校首发】河南师范大附属中学中考数学五模试卷含解析: 这是一份2022年【全国百强校首发】河南师范大附属中学中考数学五模试卷含解析,共22页。试卷主要包含了如果,那么代数式的值是等内容,欢迎下载使用。

    2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析: 这是一份2022届【全国百强校首发】江西省高安中学中考数学押题试卷含解析,共17页。试卷主要包含了已知下列命题,单项式2a3b的次数是等内容,欢迎下载使用。

    2021-2022学年【全国百强校首发】四川省阆中学中学中考数学押题卷含解析: 这是一份2021-2022学年【全国百强校首发】四川省阆中学中学中考数学押题卷含解析,共18页。试卷主要包含了计算的结果为等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map