2021-2022学年安徽省亳州市蒙城八中重点中学中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是 , 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是( )
A.2 B.3 C.4 D.5
2.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )
A.10° B.20° C.25° D.30°
3.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )
A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)
4.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )
A. B. C. D.
5.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为( )
A.0 B.0或﹣2 C.﹣2 D.2
6.某校九年级(1)班全体学生实验考试的成绩统计如下表:
成绩(分)
24
25
26
27
28
29
30
人数(人)
2
5
6
6
8
7
6
根据上表中的信息判断,下列结论中错误的是( )
A.该班一共有40名同学
B.该班考试成绩的众数是28分
C.该班考试成绩的中位数是28分
D.该班考试成绩的平均数是28分
7.的绝对值是( )
A. B. C. D.
8.下列计算结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
9.下列各式正确的是( )
A. B.
C. D.
10.在,,则的值为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.
12.如图,点A在反比例函数y=(x>0)的图像上,过点A作AD⊥y轴于点D,延长AD至点C,使CD=2AD,过点A作AB⊥x轴于点B,连结BC交y轴于点E,若△ABC的面积为6,则k的值为________.
13.(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_______.
14.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.
15.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.则图中阴影部分的面积是____________.
16.化简:①=_____;②=_____;③=_____.
17.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.
三、解答题(共7小题,满分69分)
18.(10分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.
(1)求3、4两月平均每月下调的百分率;
(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?
(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.
19.(5分)如图,在等腰△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D且BD=2AD,过点D作DE⊥AC交BA延长线于点E,垂足为点F.
(1)求tan∠ADF的值;
(2)证明:DE是⊙O的切线;
(3)若⊙O的半径R=5,求EF的长.
20.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.
21.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)△ABC的面积等于_____;
(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.
22.(10分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)
23.(12分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.
24.(14分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
(1)求证:△ADC∽△ACB;
(2)CE与AD有怎样的位置关系?试说明理由;
(3)若AD=4,AB=6,求的值.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.
【详解】
设这个数是a,
把x=1代入得:(-2+1)=1-,
∴1=1-,
解得:a=1.
故选:D.
【点睛】
本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.
2、C
【解析】
分析:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,∴∠ABC=60°.
∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.
∵GH∥EF,∴∠2=∠AEC=25°.
故选C.
3、C
【解析】
如图:分别作AC与AB的垂直平分线,相交于点O,
则点O即是该圆弧所在圆的圆心.
∵点A的坐标为(﹣3,2),
∴点O的坐标为(﹣2,﹣1).
故选C.
4、C
【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.
【详解】
设瓶子的容积即酒精与水的和是1,
则纯酒精之和为:1×+1×=+,
水之和为:+,
∴混合液中的酒精与水的容积之比为:(+)÷(+)=,
故选C.
【点睛】
本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.
5、C
【解析】
由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.
【详解】
∵一元二次方程mx1+mx﹣=0有两个相等实数根,
∴△=m1﹣4m×(﹣)=m1+1m=0,
解得:m=0或m=﹣1,
经检验m=0不合题意,
则m=﹣1.
故选C.
【点睛】
此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
6、D
【解析】
直接利用众数、中位数、平均数的求法分别分析得出答案.
【详解】
解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;
B、该班考试成绩的众数是28分,此选项正确,不合题意;
C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题
意;
D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),
故选项D错误,符合题意.
故选D.
【点睛】
此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.
7、C
【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
【详解】
在数轴上,点到原点的距离是,
所以,的绝对值是,
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握绝对值的概念.
8、C
【解析】解:A.x10÷x2=x8,不符合题意;
B.x6﹣x不能进一步计算,不符合题意;
C.x2x3=x5,符合题意;
D.(x3)2=x6,不符合题意.
故选C.
9、A
【解析】
∵,则B错;,则C;,则D错,故选A.
10、A
【解析】
本题可以利用锐角三角函数的定义求解即可.
【详解】
解:tanA=,
∵AC=2BC,
∴tanA=.
故选:A.
【点睛】
本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
二、填空题(共7小题,每小题3分,满分21分)
11、4
【解析】
先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA,最后用勾股定理即可得出结论.
【详解】
设圆锥底面圆的半径为 r,
∵AC=6,∠ACB=120°,
∴=2πr,
∴r=2,即:OA=2,
在 Rt△AOC 中,OA=2,AC=6,根据勾股定理得,OC==4,
故答案为4.
【点睛】
本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA的长是解本题的关键.
12、1
【解析】
连结BD,利用三角形面积公式得到S△ADB=S△ABC=2,则S矩形OBAD=2S△ADB=1,于是可根据反比例函数的比例系数k的几何意义得到k的值.
【详解】
连结BD,如图,
∵DC=2AD,
∴S△ADB=S△BDC=S△BAC=×6=2,
∵AD⊥y轴于点D,AB⊥x轴,
∴四边形OBAD为矩形,
∴S矩形OBAD=2S△ADB=2×2=1,
∴k=1.
故答案为:1.
【点睛】
本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
13、3或1.
【解析】
解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;
②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.
综上所述:∴m的值为3或1.
故答案为3或1.
14、100(1+x)2=121
【解析】
根据题意给出的等量关系即可求出答案.
【详解】
由题意可知:100(1+x)2=121
故答案为:100(1+x)2=121
【点睛】
本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.
15、(-)cm2
【解析】
S阴影=S扇形-S△OBD= 52-×5×5=.
故答案是: .
16、4 5 5
【解析】
根据二次根式的性质即可求出答案.
【详解】
①原式=4;②原式==5;③原式==5,
故答案为:①4;②5;③5
【点睛】
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
17、2, 0≤x≤2或≤x≤2.
【解析】
(2)由图象直接可得答案;
(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答
【详解】
(2)由 函数图象可知,乙比甲晚出发2小时.
故答案为2.
(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:
一是甲出发,乙还未出发时:此时0≤x≤2;
二是乙追上甲后,直至乙到达终点时:
设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,
∴k=5,
∴甲的函数解析式为:y=5x①
设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得: ,
解得 ,
∴乙的函数解析式为:y=20x﹣20 ②
由①②得 ,
∴ ,
故 ≤x≤2符合题意.
故答案为0≤x≤2或≤x≤2.
【点睛】
此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据
三、解答题(共7小题,满分69分)
18、(1)10%;(2)方案一更优惠,小颖选择方案一:打9.8折购买;(3)不会跌破4800元/平方米,理由见解析
【解析】
(1)设3、4两月平均每月下调的百分率为x,根据下降率公式列方程解方程求出答案;
(2)分别计算出方案一与方案二的费用相比较即可;
(3)根据(1)的答案计算出6月份的价格即可得到答案.
【详解】
(1)设3、4两月平均每月下调的百分率为x,
由题意得:7500(1﹣x)2=6075,
解得:x1=0.1=10%,x2=1.9(舍),
答:3、4两月平均每月下调的百分率是10%;
(2)方案一:6075×100×0.98=595350(元),
方案二:6075×100﹣100×1.5×24=603900(元),
∵595350<603900,
∴方案一更优惠,小颖选择方案一:打9.8折购买;
(3)不会跌破4800元/平方米
因为由(1)知:平均每月下调的百分率是10%,
所以:6075(1﹣10%)2=4920.75(元/平方米),
∵4920.75>4800,
∴6月份该楼盘商品房成交均价不会跌破4800元/平方米.
【点睛】
此题考查一元二次方程的实际应用,方案比较计算,正确理解题意并列出方程解答问题是解题的关键.
19、(1);(2)见解析;(3)
【解析】
(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;
(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;
(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.
【详解】
解:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵AB=AC,
∴∠BAD=∠CAD,
∵DE⊥AC,
∴∠AFD=90°,
∴∠ADF=∠B,
∴tan∠ADF=tan∠B==;
(2)连接OD,
∵OD=OA,
∴∠ODA=∠OAD,
∵∠OAD=∠CAD,
∴∠CAD=∠ODA,
∴AC∥OD,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙O的切线;
(3)设AD=x,则BD=2x,
∴AB=x=10,
∴x=2,
∴AD=2,
同理得:AF=2,DF=4,
∵AF∥OD,
∴△AFE∽△ODE,
∴,
∴=,
∴EF=.
【点睛】
本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.
20、-
【解析】
先化简,再解不等式组确定x的值,最后代入求值即可.
【详解】
(﹣)÷,
=÷
=
解不等式组,
可得:﹣2<x≤2,
∴x=﹣1,0,1,2,
∵x=﹣1,0,1时,分式无意义,
∴x=2,
∴原式==﹣.
21、6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G
【解析】
(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.
【详解】
解:(1)4×3÷2=6,故△ABC的面积等于6.
(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG即为所求正方形.
故答案为:6,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G.
【点睛】
本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.
22、小时
【解析】
过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
【详解】
解:如图,过点C作CD⊥AB交AB延长线于D.
在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
∴CD=AC=40海里.
在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
∴BC=≈=50(海里),
∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).
考点:解直角三角形的应用-方向角问题
23、 (1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
【解析】
(1)根据题意只需要证明a2+b2=c2,即可解答
(2)根据题意将n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再将直角三角形的一边长为37,分别分三种情况代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
【详解】
(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
∴a2+b2=c2,
∵n为正整数,
∴a、b、c是一组勾股数;
(2)解:∵n=5
∴a= (m2﹣52),b=5m,c= (m2+25),
∵直角三角形的一边长为37,
∴分三种情况讨论,
①当a=37时, (m2﹣52)=37,
解得m=±3 (不合题意,舍去)
②当y=37时,5m=37,
解得m= (不合题意舍去);
③当z=37时,37= (m2+n2),
解得m=±7,
∵m>n>0,m、n是互质的奇数,
∴m=7,
把m=7代入①②得,x=12,y=1.
综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
【点睛】
此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键
24、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
【解析】
(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
(3)根据相似三角形的性质列出比例式,计算即可.
【详解】
解:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
又∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB;
(2)CE∥AD,
理由:∵△ADC∽△ACB,
∴∠ACB=∠ADC=90°,
又∵E为AB的中点,
∴∠EAC=∠ECA,
∵∠DAC=∠CAE,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)∵AD=4,AB=6,CE=AB=AE=3,
∵CE∥AD,
∴∠FCE=∠DAC,∠CEF=∠ADF,
∴△CEF∽△ADF,
∴==,
∴=.
2023年安徽省亳州市蒙城县部分学校中考数学模拟试卷(4月份)(含解析): 这是一份2023年安徽省亳州市蒙城县部分学校中考数学模拟试卷(4月份)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省菏泽重点中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份山东省菏泽重点中学2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了下列图形中,是轴对称图形的是,下列事件中必然发生的事件是等内容,欢迎下载使用。
曲靖市重点中学2021-2022学年中考数学模拟精编试卷含解析: 这是一份曲靖市重点中学2021-2022学年中考数学模拟精编试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算-3-1的结果是,下列图形不是正方体展开图的是等内容,欢迎下载使用。