2021-2022学年福建省厦门市音乐校中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )
A.四条边相等的四边形是菱形 B.一组邻边相等的平行四边形是菱形
C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直平分的四边形是菱形
2.从3、1、-2这三个数中任取两个不同的数作为P点的坐标,则P点刚好落在第四象限的概率是( )
A. B. C. D.
3.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为4m的正方形,使不规则区域落在正方形内.现向正方形内随机投掷小球(假设小球落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小球落在不规则区域的频率稳定在常数0.65附近,由此可估计不规则区域的面积约为( )
A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m2
4.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )
A.8 B.10 C.13 D.14
5.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是( )
A.本市明天将有的地区下雨 B.本市明天将有的时间下雨
C.本市明天下雨的可能性比较大 D.本市明天肯定下雨
6.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.
A.B与C B.C与D C.E与F D.A与B
7.不等式组的正整数解的个数是( )
A.5 B.4 C.3 D.2
8.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
A.右转80° B.左转80° C.右转100° D.左转100°
9.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为( )
A.2 B.3 C.4 D.5
10.若关于x的不等式组无解,则m的取值范围( )
A.m>3 B.m<3 C.m≤3 D.m≥3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为______.
12.甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
13.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.
14.一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为____________海里/时.
15.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.
16.已知二次函数中,函数y与x的部分对应值如下:
...
-1
0
1
2
3
...
...
10
5
2
1
2
...
则当时,x的取值范围是_________.
三、解答题(共8题,共72分)
17.(8分)现在,某商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?小张按合算的方案,把这台冰箱买下,如果某商场还能盈利25%,这台冰箱的进价是多少元?
18.(8分)如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)数轴上点B对应的数是______.经过几秒,点M、点N分别到原点O的距离相等?
19.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
20.(8分)化简(),并说明原代数式的值能否等于-1.
21.(8分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.
(1)求抛物线C的函数表达式;
(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.
(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.
22.(10分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
频数
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
请根据所给信息,解答下列问题:m= ,n= ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
23.(12分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
(1)求二次函数的解析式和该二次函数图象的顶点的坐标.
(2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
24.许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根据菱形的判定推出即可.
【详解】
∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,
∴AB=BD , AC=CD ,
∵AB=AC ,
∴AB=BD=CD=AC ,
∴ 四边形 ABDC 是菱形;
故选A.
【点睛】
本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.
2、B
【解析】
解:画树状图得:
∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P点刚好落在第四象限的概率==.故选B.
点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.
3、D
【解析】
首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.
【详解】
∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.65附近,
∴小石子落在不规则区域的概率为0.65,
∵正方形的边长为4m,
∴面积为16 m2
设不规则部分的面积为s m2
则=0.65
解得:s=10.4
故答案为:D.
【点睛】
利用频率估计概率.
4、C
【解析】
根据三角形的面积公式以及切线长定理即可求出答案.
【详解】
连接PE、PF、PG,AP,
由题意可知:∠PEC=∠PFA=PGA=90°,
∴S△PBC=BC•PE=×4×2=4,
∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,
∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,
∴由切线长定理可知:S△APG=S四边形AFPG=,
∴=×AG•PG,
∴AG=,
由切线长定理可知:CE=CF,BE=BG,
∴△ABC的周长为AC+AB+CE+BE
=AC+AB+CF+BG
=AF+AG
=2AG
=13,
故选C.
【点睛】
本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.
5、C
【解析】
试题解析:根据概率表示某事情发生的可能性的大小,分析可得:
A、明天降水的可能性为85%,并不是有85%的地区降水,错误;
B、本市明天将有85%的时间降水,错误;
C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;
D、明天肯定下雨,错误.
故选C.
考点:概率的意义.
6、A
【解析】
试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.
故选A.
考点:1、计算器—数的开方;2、实数与数轴
7、C
【解析】
先解不等式组得到-1<x≤3,再找出此范围内的正整数.
【详解】
解不等式1-2x<3,得:x>-1,
解不等式≤2,得:x≤3,
则不等式组的解集为-1<x≤3,
所以不等式组的正整数解有1、2、3这3个,
故选C.
【点睛】
本题考查了一元一次不等式组的整数解,解题的关键是正确得出 一元一次不等式组的解集.
8、A
【解析】
60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.
故选A.
9、C
【解析】
根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,
主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握通过三视图还原几何体的方法.
10、C
【解析】
根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.
【详解】
,
由①得:x>2+m,
由②得:x<2m﹣1,
∵不等式组无解,
∴2+m≥2m﹣1,
∴m≤3,
故选C.
【点睛】
考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
∵DE是BC的垂直平分线,
∴DB=DC=2,
∵BD是∠ABC的平分线,∠A=90°,DE⊥BC,
∴DE=AD=1,
∴BE=,
故答案为 .
点睛:本题考查的是线段的垂直平分线的性质、角平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
12、630
【解析】
分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
所以甲车从B地向A地行驶了120×2.25=270千米,
当乙车到达A地时,甲车离A地的距离为900-270=630千米.
点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
13、4
【解析】
∵AB=2cm,AB=AB1,
∴AB1=2cm,
∵四边形ABCD是矩形,AE=CE,
∴∠ABE=∠AB1E=90°
∵AE=CE
∴AB1=B1C
∴AC=4cm.
14、
【解析】
设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.
【详解】
如图所示:
该船行驶的速度为x海里/时,
3小时后到达小岛的北偏西45°的C处,
由题意得:AB=80海里,BC=3x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°−60°=30°,
∴AQ=AB=40,BQ=AQ=40,
在直角三角形AQC中,∠CAQ=45°,
∴CQ=AQ=40,
∴BC=40+40=3x,
解得:x=.
即该船行驶的速度为海里/时;
故答案为:.
【点睛】
本题考查的是解直角三角形,熟练掌握方向角是解题的关键.
15、
【解析】
利用P(A)=,进行计算概率.
【详解】
从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.
故答案是:.
【点睛】
本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.
16、0
根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案.
【详解】
由表可知,二次函数的对称轴为直线x=2,
所以,x=4时,y=5,
所以,y<5时,x的取值范围为0
此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握.
三、解答题(共8题,共72分)
17、(1)当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,能节省400元钱;(3)这台冰箱的进价是2480元.
【解析】
(1)设顾客购买x元金额的商品时,买卡与不买卡花钱相等,根据花300元买这种卡后,凭卡可在这家商场按标价的8折购物,列出方程,解方程即可;根据x的值说明在什么情况下购物合算
(2)根据(1)中所求即可得出怎样购买合算,以及节省的钱数;
(3)设进价为y元,根据售价-进价=利润,则可得出方程即可.
【详解】
解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.
根据题意,得300+0.8x=x,
解得x=1500,
所以当顾客消费等于1500元时,买卡与不买卡花钱相等;
当顾客消费少于1500元时,300+0.8xx不买卡合算;
当顾客消费大于1500元时,300+0.8xx买卡合算;
(2)小张买卡合算,
3500﹣(300+3500×0.8)=400,
所以,小张能节省400元钱;
(3)设进价为y元,根据题意,得
(300+3500×0.8)﹣y=25%y,
解得 y=2480
答:这台冰箱的进价是2480元.
【点睛】
此题主要考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.
18、(1)1;(2)经过2秒或2秒,点M、点N分别到原点O的距离相等
【解析】
试题分析:(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;
(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.
试题解析:(1)∵OB=3OA=1,
∴B对应的数是1.
(2)设经过x秒,点M、点N分别到原点O的距离相等,
此时点M对应的数为3x-2,点N对应的数为2x.
①点M、点N在点O两侧,则
2-3x=2x,
解得x=2;
②点M、点N重合,则,
3x-2=2x,
解得x=2.
所以经过2秒或2秒,点M、点N分别到原点O的距离相等.
19、(1)(2).
【解析】
(1)根据总共三种,A只有一种可直接求概率;
(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
【详解】
解: (1)甲投放的垃圾恰好是A类的概率是.
(2)列出树状图如图所示:
由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
20、见解析
【解析】
先根据分式的混合运算顺序和运算法则化简原式,若原代数式的值为﹣1,则=﹣1,截至求得x的值,再根据分式有意义的条件即可作出判断.
【详解】
原式=[
=
=
=,
若原代数式的值为﹣1,则=﹣1,
解得:x=0,
因为x=0时,原式没有意义,
所以原代数式的值不能等于﹣1.
【点睛】
本题考查了分式的化简求值,熟练掌握运算法则是解题的关键.
21、(1);(2)2<m<;(1)m=6或m=﹣1.
【解析】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,由此即可解决问题;
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,由,消去y得到,由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,解不等式组即可解决问题;
(1)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系数法即可解决问题.
【详解】
(1)由题意抛物线的顶点C(0,4),A(,0),设抛物线的解析式为,把A(,0)代入可得a=,
∴抛物线C的函数表达式为.
(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为,
由,
消去y得到 ,
由题意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有,
解得2<m<,
∴满足条件的m的取值范围为2<m<.
(1)结论:四边形PMP′N能成为正方形.
理由:1情形1,如图,作PE⊥x轴于E,MH⊥x轴于H.
由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,∴PF=FM,∠PFM=90°,易证△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵点M在上,∴,解得m=﹣1或﹣﹣1(舍弃),∴m=﹣1时,四边形PMP′N是正方形.
情形2,如图,四边形PMP′N是正方形,同法可得M(m﹣2,2﹣m),
把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍弃),
∴m=6时,四边形PMP′N是正方形.
综上所述:m=6或m=﹣1时,四边形PMP′N是正方形.
22、(1)70,0.2(2)70(3)750
【解析】
(1)根据题意和统计表中的数据可以求得m、n的值;
(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
【详解】
解:(1)由题意可得,
m=200×0.35=70,n=40÷200=0.2,
故答案为70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图,如下图所示;
(3)由题意可得,
该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.
【点睛】
本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
23、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
【解析】
(1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
【详解】
(1)由题意得:x1+x2=3,x1x2=﹣2m,
x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
解得:m=2,
抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
顶点坐标为(,);
(2)存在,理由:
将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
∴点A、B的坐标为(0,2)、(,),
一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
∴PB==,
AP==2
过点B作BM⊥AB交x轴于点M,
∵∠MBP=∠AOP=90°,∠MPB=∠APO,
∴△APO∽△MPB,
∴ ,∴ ,
∴MP=,
∴OM=OP﹣MP=6﹣=,
∴点M(,0).
【点睛】
本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
24、51.96米.
【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
【详解】
解:∵∠CBD=1°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=1.
在Rt△BDC中,
∴(米).
答:文峰塔的高度CD约为51.96米.
【点睛】
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
浙江省金华市国际实验校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份浙江省金华市国际实验校2021-2022学年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是,解分式方程时,去分母后变形为,已知m=,n=,则代数式的值为,-5的倒数是,抛物线的顶点坐标是等内容,欢迎下载使用。
福建省德化县联考2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份福建省德化县联考2021-2022学年中考数学考试模拟冲刺卷含解析,共24页。
2022届福建省泉州洛江区七校联考中考数学考试模拟冲刺卷含解析: 这是一份2022届福建省泉州洛江区七校联考中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了下列命题中错误的有个等内容,欢迎下载使用。