![2022年全国中考数学压轴题第1页](http://img-preview.51jiaoxi.com/2/3/13266199/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年全国中考数学压轴题第2页](http://img-preview.51jiaoxi.com/2/3/13266199/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年全国中考数学压轴题第3页](http://img-preview.51jiaoxi.com/2/3/13266199/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2022年全国中考数学压轴题
展开
这是一份2022年全国中考数学压轴题,共9页。
已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是( )
A.332B.532C.33D.732
【考点】勾股定理;等边三角形的性质.
【专题】等腰三角形与直角三角形;推理能力.
【分析】如图,不妨假设点P在AB的左侧,易得S△PAB+S△ABC=S△PBC+S△PAC ,结合S1+S2+S3=2S0,可得S1=S0=S△ABC,从而可得P到AB边的距离为定值,则P在与AB平行且距离为的定直线PM上运动,当OP⊥PM时,OP最小,此时OP=
【解答】解:如图,不妨假设点P在AB的左侧,
∵S△PAB+S△ABC=S△PBC+S△PAC,∴S1+S0=S2+S3,
∵S1+S2+S3=2S0,∴S1+S1+S0=2S0,∴S1=12S0,
∵△ABC是等边三角形,边长为6,∴S0=34×62=93,∴S1=932,
过点P作AB的平行线PM,连接CO并延长CO交AB于点R,交PM于点T.
∵△PAB的面积是定值,∴点P的运动轨迹是直线PM,
∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴12•AB•RT=932,CR=33,OR=3,
∴RT=332,∴OT=OR+TR=532,
∵OP≥OT,∴OP的最小值为532,故选:B.
【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△PAB的面积是定值.
2022年安徽中考--第14题(填空压轴题)
如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:
(1)∠FDG= °;(2)若DE=1,DF=22,则MN= .
【考点】正方形的性质;勾股定理;等腰直角三角形.
【专题】矩形、菱形、正方形;应用意识.
【分析】(1)根据AAS证△ABE≌△GEF,得出EG=AB,GF=AE,推出DG=GF即可得出∠FDG的度数;
(2)由(1)的结论得出CD的长度,GF的长度,根据相似三角形的性质分别求出DM,NC的值即可得出MN的值.
【解答】解:由题知,△BEF是以E为直角顶点的等腰直角三角形,
∴∠AEB+∠GEF=90°,
∵∠AEB+∠ABE=90°,
∴∠GEF=∠ABE,
在△ABE和△GEF中,
∠GEF=∠ABE∠A=∠G=90°BE=EF,
∴△ABE≌△GEF(AAS),
∴EG=AB=AD,GF=AE,
即DG+DE=AE+DE,
∴DG=AE=GF,
即△DGF是等腰直角三角形,
∴∠FDG=45°,
故答案为:45°;
(2)∵DE=1,DF=22,
由(1)知,△DGF是等腰直角三角形,
∴DG=GF=2,AB=AD=CD=ED+DG=2+1=3,
延长GF和BC交于点H,
∴CD∥GH,
∴△EDM∽△EGF,
∴MDGF=EDEG,即MD2=13,∴MD=23,
同理△BNC∽△BFH,∴NCFH=BCBH,即NCGH−GF=BCBC+CH,
∴NC3−2=33+2,∴NC=35,
∴MN=CD﹣MD﹣NC=3−23−35=2615,故答案为:2615.
【点评】本题主要考查正方形的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,熟练掌握这些基础知识是解题的关键.
2022年安徽中考--第22题(解答题)
已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.
(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;
(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.
(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.
【考点】四边形综合题.
【专题】几何综合题;推理能力.
【分析】(1)利用AAS证明△DOE≌△BOC,得DE=BC,从而得出四边形BCDE是平行四边形,再根据CD=CB,即可证明结论;
(2)(i)根据线段垂直平分线的性质得,AE=EC,ED=EB,则∠AED=∠CED=∠BEC,再根据平角的定义,可得答案;
(ii)利用AAS证明△ABF≌△ACE,可得AC=AB,由AE=AF,利用等式的性质,即可证明结论.
【解答】(1)证明:∵CB=CD,CE⊥BD,
∴DO=BO,
∵DE∥BC,
∴∠DEO=∠BCO,
∵∠DOE=∠BOC,
∴△DOE≌△BOC(AAS),
∴DE=BC,
∴四边形BCDE是平行四边形,
∵CD=CB,
∴平行四边形BCDE是菱形;
(2)(i)解:∵DE垂直平分AC,
∴AE=EC且DE⊥AC,
∴∠AED=∠CED,
又∵CD=CB且CE⊥BD,
∴CE垂直平分DB,
∴DE=BE,
∴∠DEC=∠BEC,
∴∠AED=∠CED=∠BEC,
又∵∠AED+∠CED+∠BEC=180°,
∴∠CED=13×180°=60°;
(ii)证明:由(i)得AE=EC,
又∵∠AEC=∠AED+∠DEC=120°,
∴∠ACE=30°,
同理可得,在等腰△DEB中,∠EBD=30°,
∴∠ACE=∠ABF=30°,
在△ACE与△ABF中,
∠ACE=∠ABF∠CAE=∠BAFAE=AF,
∴△ABF≌△ACE(AAS),∴AC=AB,
又∵AE=AF,∴AB﹣AE=AC﹣AF,即BE=CF.
【点评】本题是四边形综合题,主要考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识,熟练掌握线段垂直平分线的性质是解题的关键.
2022年安徽中考--第23题(解答题压轴题)
如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.
(1)求此抛物线对应的函数表达式;
(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:
(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).
【考点】二次函数综合题.
【专题】数形结合;二次函数的应用;应用意识.
【分析】(1)通过分析A点坐标,利用待定系数法求函数解析式;
(2)(ⅰ)结合矩形性质分析得出P2的坐标为(m,−16m2+8),然后列出函数关系式,利用二次函数的性质分析最值;
(ⅱ)设P2P1=n,分别表示出方案一和方案二的矩形面积,利用二次函数的性质分析最值,从而利用数形结合思想确定取值范围.
【解答】解:(1)由题意可得:A(﹣6,2),D(6,2),
又∵E(0,8)是抛物线的顶点,
设抛物线对应的函数表达式为y=ax2+8,将A(﹣6,2)代入,
(﹣6)2a+8=2,解得:a=−16,
∴抛物线对应的函数表达式为y=−16x2+8;
(2)(ⅰ)∵点P1的横坐标为m(0<m≤6),且四边形P1P2P3P4为矩形,点P2,P3在抛物线AED上,
∴P2的坐标为(m,−16m2+8),
∴P1P2=P3P4=MN=−16m2+8,P2P3=2m,
∴l=3(−16m2+8)+2m=−12m2+2m+24=−12(m﹣2)2+26,
∵−12<0,∴当m=2时,l有最大值为26,
即栅栏总长l与m之间的函数表达式为l=−12m2+2m+24,l的最大值为26;
(ⅱ)方案一:设P2P1=n,则P2P3=18﹣3n,
∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,
∵﹣3<0,∴当n=3时,矩形面积有最大值为27,
此时P2P1=3,P2P3=9,
令−16x2+8=3,解得:x=±30,
∴此时P1的横坐标的取值范围为−30+9≤P1横坐标≤30,
方案二:设P2P1=n,则P2P3=18−2n2=9﹣n,
∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+n=﹣(n−92)2+814,
∵﹣1<0,∴当n=92时,矩形面积有最大值为814,
此时P2P1=92,P2P3=92,
令−16x2+8=92,
解得:x=±21,
∴此时P1的横坐标的取值范围为−21+92≤P1横坐标≤21.
【点评】本题考查二次函数的应用,掌握待定系数法求函数解析式,准确识图,确定关键点的坐标,利用数形结合思想解题是关键.
相关试卷
这是一份压轴题29填空压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题29填空压轴题几何篇-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题29填空压轴题几何篇-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共74页, 欢迎下载使用。
这是一份压轴题28填空压轴题(函数篇)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题28填空压轴题函数篇-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题28填空压轴题函数篇-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。
这是一份压轴题27选择压轴题(几何篇)-2023年中考数学压轴题专项训练(全国通用),文件包含压轴题27选择压轴题几何篇-2023年中考数学压轴题专项训练全国通用解析版docx、压轴题27选择压轴题几何篇-2023年中考数学压轴题专项训练全国通用原卷版docx等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)