2022南昌高三上学期摸底考试数学(理)试题含答案
展开
这是一份2022南昌高三上学期摸底考试数学(理)试题含答案,共11页。试卷主要包含了考生必须保证答题卡整洁,直线,,则“”是“”的,已知向量,,则,已知,且,则的值为,函数的图像大致为,已知数列满足,则的前20项和等内容,欢迎下载使用。
南昌市2022届高三摸底测试卷理科数学本试卷共4页,23小题,满分150分0考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填涂在答题卡上,并在相应位置贴好条形码.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案信息涂黑、如需改动,用橡皮擦干净后,再选涂其它答案.3.非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保证答题卡整洁.考试结束后,将试卷和答题卡一并交回.一.选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合的元素个数为( )A.3 B.4 C.5 D.62.若z为纯虚数,且,则( )A.i B.-i C.2i D.-2i3.为数列的前n项和,若,,则( )A. B. C.10 D.4.设F为抛物线焦点,直线,点A为C上任意一点,过点A作于P,则( )A.3 B.4 C.2. D.不能确定5.直线,,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知向量,,则( )A. B. C. D.57.某市出台两套出租车计价方案,方案一:2公里以内收费8元(起步价),超过2公里的部分每公里收费3元,不足1公里按1公里计算;方案二:3公里以内收费12元(起步价),超过3公里不超过10公里的部分每公里收费2.5元,超过10公里的部分每公里收费3.5元,不足1公里按1公里计算.以下说法正确的是( )A.方案二比方案一更优惠B.乘客甲打车行驶4公里,他应该选择方案二C.乘客乙打车行驶12公里,他应该选择方案二D.乘客丙打车行驶16公里,他应该选择方案二8.已知,且,则的值为( )A. B. C. D.9.函数的图像大致为( )A.B.C.D.10.已知数列满足,则的前20项和( )A. B. C. D.11.已知双曲线的左、右焦点分别为、,过的直线l与C的左、右支分别相交于M、N两点,若,,则双曲线的离心率为( )A. B. C.2 D.12.已知函数,若,若点不可能在曲线C上,则曲线C的方程可以是( )A. B.C. D.二.填空题:本题共4小题,每小题5分,共20分.13.某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示.现在用分层抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1020小时、980小时、1030小时,估计这个企业生产的产品的平均使用寿命为________小时.14.若的展开式中共有7项,则常数项为________(用数字作答).15.执行如下框图,若输出的,则输入x的取值范围为________.16.正四棱锥,底面四边形为边长为2的正方形,,其内切球为球G,平面过与棱,分别交于点M,N,且与平面所成二面角为30°,则平面截球G所得的图形的面积为________.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在中,角A,B,C所对的边分别为a,b,c,,.(Ⅰ)求的值;(Ⅱ)已知的面积为,求b边.18.(12分)如图在四棱锥中,底面为正方形,为等边三角形,E为中点,平面平面.(I)求证:平面;(II)求二面角的余弦值.19.(12分)己知椭圆,,分别为椭圆的左、右焦点,O为坐标原点,P为椭圆上任意一点.(Ⅰ)若,求的面积;(Ⅱ)斜率为1的直线与椭圆相交于A,B两点,,求直线的方程.20.(12分)已知函数.(Ⅰ)若函数在定义域上单调递增,求实数a的取值范围;(Ⅱ)若函数存在两个极值点,,求实数a的取值范围,并比较与的大小.21.(12分)甲、乙、丙、丁、戊五位同学参加一次节日活动,他们都有机会抽取奖券.墙上挂着两串奖券袋(如图),A,B,C,D,E五个袋子分别装有价值100,80,120,200,90(单位:元)的奖券,抽取方法是这样的:每个同学只能从其中一串的最下端取一个袋子,得到其中奖券,直到礼物取完为止.甲先取,然后乙、丙、丁、戊依次取,若两串都有礼物袋,则每个人等可能选择一串取.(Ⅰ)求丙取得的礼物券为80元的概率;(Ⅱ)记丁取得的礼物券为X元,求X的分布列及其数学期望.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设,直线l与曲线C的交点为M,N,求.23.(10分)选修4-5:不等式选讲已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对任意,都有恒成立,求实数a的取值范围. 2022届高三摸底测试卷理科数学参考答案及评分标准一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.题号123456789101112答案CCCAAACCBDBC二.填空题:本大题共4小题,每小题5分,满分20分.13.1015 14.240 15. 16.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17题-21题为必考题,每个试题考生都必须作答.第22题、23题为选考题,考生根据要求作答.17.【解析】(Ⅰ)由正弦定理,(其中R为外接圆的半径),所以,,,代入已知条件可得:,····································································2分所以,即,·············································································4分,故.·················································································6分(Ⅱ)由已知可得,所以的面积为,故,解得,.···········································································9分所以,即.············································································12分18.【解析】(Ⅰ)连接交于点O,连接、,因为为等边三角形,所以,因为底面为正方形,所以,因为,所以平面,········································································3分又平面,所以,因为平面平面,平面平面,所以平面,因为E为中点,所以,则平面.······························································5分(Ⅱ)如图,以为x轴,为y轴,为z轴,建立空间直角坐标系,设,则,所以,,,,则,,,因为平面平面,所以平面的法向量为,····································································7分设平面的法向量为,则,所以,所以,···········································································9分所以,·················································································11分所以二面角的余弦值为.··································································12分19.【解析】(Ⅰ)由题意,解得,,····························································2分又,所以,即,··················································································4分所以;·················································································5分(Ⅱ)直线斜率为1,设直线方程,,,由,消元得,得··········································································7分又,知,即·············································································9分而所以,,得,满足,所以直线的方程或.·····································································12分20.【解析】(Ⅰ)由得······································································2分由题在恒成立,即在恒成立而,所以;·············································································5分(Ⅱ)由题意知,,是方程在内的两个不同实数解,令,注意到,其对称轴为直线,故只需,解得,即实数a的取值范围为;···································································8分由,是方程的两根,得,,因此,···················································································10分又,所以,即得证.··············································································12分21.【解析】(Ⅰ)由题意知,列举如下:····························································2分所以丙取得的礼物券为80元的概率;(Ⅱ)如下图,所以X的可能取值为100,80,200,90,又因为;;;;所以分布列为:··········································································8分(每个概率1分)X8090100200P所以.22.【解析】(Ⅰ)直线l的参数方程为(t为参数),转换为普通方程为········································································2分曲线C的极坐标方程为,根据转换为直角坐标方程为.·······························································5分(Ⅱ)易知直线l的参数方程标准形式为代入到中,得到;设M,N所对应的参数分别为,,则,,·················································································8分所以.················································································10分23.【解析】(Ⅰ)因为,所以,当时,,所以;当时,,所以,综上不等式的解集为.····································································5分(II)因为,···········································································8分当时,在单调递增;当时,;所以函数的最小值是a,所以.·····························································10分
相关试卷
这是一份2023届广西高三上学期开学摸底考试数学(理)试题含答案,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2022贵阳高三上学期8月摸底考试数学(理)含答案,共14页。试卷主要包含了请保持答题卡平整,不能折叠等内容,欢迎下载使用。
这是一份2022南昌高三上学期摸底考试理科数学试题扫描版含答案,共6页。