所属成套资源:【查漏补缺】2022年高考数学(理)三轮冲刺过关
回归教材重难点06 概率与统计-【查漏补缺】2022年高考数学(理)三轮冲刺过关
展开
这是一份回归教材重难点06 概率与统计-【查漏补缺】2022年高考数学(理)三轮冲刺过关,文件包含回归教材重难点06概率与统计解析版docx、回归教材重难点06概率与统计原卷版docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
回归教材重难点06 概率与统计
概率与统计解答题是高考数学必考内容,该考点命题相对稳定,难度中等,是考生必须突破的核心内容之一.
高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。试题考查特点是以实际应用问题为载体,解答题部分主要考查独立性检验、超几何分布、二项分布以及正态分布对应的数学期望以及方差。概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。取代了传统意义上的应用题,成为高考中的亮点。解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
回顾近几年的高考试题,可以看出概率统计解答题,大多紧密结合社会实际,以现实生活为背景设置试题,注重知识的综合应用与实际应用,作为考查实践能力的重要载体,命题者要求考生会收集,整理、分析数据,能从大量数据中抽取对研究问题有用的信息,建立数学模型,再应用数学原理和数学工具解决实际问题.
1.求概率及随机变量的分布列与期望
求离散型随机变量的分布列及期望的一般步骤:
(1)根据题中条件确定随机变量的可能取值;
(2)求出随机变量所有可能取值对应的概率,即可得出分布列;
(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算)
2.超几何分布与二项分布
超几何分布与二项分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
一般地,在含有件产品的件产品中,任取件,其中恰有件次品,则事件发生的概率为,其中,且,称为超几何分布列.
一般地,在次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则.此时称随机变量服从二项分布,记作,并称为成功概率.此时有.
3.概率与其它知识的交汇问题
在知识交汇处设计试题是高考命题的指导思想之一,概率作为高中数学具有实际应用背景的主要内容,除与实际应用问题相交汇,还常与排列组合、函数、数列等知识交汇.求解此类问题要充分理解题意.根据题中已知条件,联系所学知识对已知条件进行转化.这类题型具体来说有两大类:
(1)所给问题是以集合、函数、立体几何、数列、向量等知识为载体的概率问题.求解时需要利用相关知识把所给问题转化为概率模型,然后利用概率知识求解.
(2)所给问题是概率问题,求解时有时需要把所求概率转化为关于某一变量的函数,然后利用函数、导数知识进行求解;或者把问题转化为与概率变量有关的数列递推关系式,再通过构造特殊数列求通项或求和.
4.期望与方差的实际应用
数学期望反映的是随机变量取值的平均水平,而方差则是反映随机变量取值在其平均值附近的离散程度.现代实际生活中,越来越多的决策需要应用数学期望与方差来对事件发生大小的可能性和稳定性进行评估,通过计算分析可以比较科学地得出各个方案的预期效果及出现偏差的大小,从而决定要选择的最佳方案.
(1)若我们希望实际的平均水平较理想,则先求随机变量的期望,当时,不应认为它们一定一样好,还需要用来比较这两个随机变量的方差,确定它们的偏离程度.
(2)若我们希望比较稳定性,应先考虑方差,再考虑均值是否相等或接近.
(3)方差不是越小就越好,而是要根据实际问题的需要来判断.
5.正态分布
解决正态分布问题有三个关键点:(1)对称轴标准差分布区间.利用对称性可求指定范围内的概率值;由,分布区间的特征进行转化,使分布区间转化为特殊区间,从而求出所求概率.注意在标准正态分布下对称轴为.
6.统计图表
(1)制作频率分布直方图的步骤.
第一步:求极差,决定组数和组距,组距
第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;
第三步:登记频数,计算频率,列出频率分布表;
第四步:画频率分布直方图.
(2)解决频率分布直方图问题时要抓住3个要点.
①直方图中各小矩形的面积之和为1;
②直方图中纵轴表示,故每组样本的频率为组距
③直方图中每组样本的频数为频率总体个数.
(3)用频率分布直方图估计众数、中位数、平均数的方法.
①众数为频率分布直方图中最高矩形底边中点的横坐标;
②中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标;
③平均数等于每个小矩形面积与小矩形底边中点横坐标之积的和.
7.回归分析
线性回归分析的原理、方法和步骤:
(1)利用图表和数字特征可以对数据做简单的分析,但是用回归直线方程可以对数据的未来值进行预测.在选取数据观察的时候,要注意大量相对稳定的数据比不稳定的数据更有价值,近期的数据比过去久远的数据更有价值.
(2)判断两组数据是否具有线性相关关系的方法:散点图,相关系数.
(3)相关指数与相关系数在含有一个解释变量的线性回归模型中是等价的量,都是用来判断线性回归模型拟合效果好不好的量.
(4)利用换元法,可以将一元非线性回归转化为线性回归.
8.独立性检验
解独立性检验应用问题的注意事项。
(1)两个明确:①明确两类主体;②明确研究的两个问题.
(2)在列联表中注意事件的对应及相关值的确定,不可混淆.
(3)在实际问题中,独立性检验的结论仅是一种数学关系表述,得到的结论有一定的概率出错.
(4)对判断结果进行描述时,注意对象的选取要准确无误,应是对假设结论进行的含概率的判断,而非其他.
【真题演练】
1.(2021·全国·高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,.
(1)已知,求;
(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,,当时,;
(3)根据你的理解说明(2)问结论的实际含义.
【答案】(1)1;(2)见解析;(3)见解析.
【解析】
【分析】
(1)利用公式计算可得.
(2)利用导数讨论函数的单调性,结合及极值点的范围可得的最小正零点.
(3)利用期望的意义及根的范围可得相应的理解说明.
【详解】
(1).
(2)设,
因为,故,
若,则,故.
,
因为,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
若,因为在为增函数且,
而当时,因为在上为减函数,故,
故为的一个最小正实根,
若,因为且在上为减函数,故1为的一个最小正实根,
综上,若,则.
若,则,故.
此时,,
故有两个不同零点,且,
且时,;时,;
故在,上为增函数,在上为减函数,
而,故,
又,故在存在一个零点,且.
所以为的一个最小正实根,此时,
故当时,.
(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝,若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1.
2.(2021·全国·高考真题(理))某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备
9.8
10.3
10.0
10.2
9.9
9.8
10.0
10.1
10.2
9.7
新设备
10.1
10.4
10.1
10.0
10.1
10.3
10.6
10.5
10.4
10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
【答案】(1);(2)新设备生产产品的该项指标的均值较旧设备有显著提高.
【解析】
【分析】
(1)根据平均数和方差的计算方法,计算出平均数和方差.
(2)根据题目所给判断依据,结合(1)的结论进行判断.
【详解】
(1),
,
,
.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备有显著提高.
3.(2021·全国·高考真题)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
【答案】(1)见解析;(2)类.
【解析】
【分析】
(1)通过题意分析出小明累计得分的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答类问题的数学期望,比较两个期望的大小即可.
【详解】
(1)由题可知,的所有可能取值为,,.
;
;
.
所以的分布列为
(2)由(1)知,.
若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.
;
;
.
所以.
因为,所以小明应选择先回答类问题.
4.(2020·全国·高考真题(理))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,≈1.414.
【答案】(1);(2);(3)详见解析
【解析】
【分析】
(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;
(2)利用公式计算即可;
(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.
【详解】
(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本(i=1,2,…,20)的相关系数为
(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,
由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物的数量差异很大,
采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,
从而可以获得该地区这种野生动物数量更准确的估计.
【点晴】
本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.
5.(2020·全国·高考真题(理))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
【答案】(1);(2);(3).
【解析】
【分析】
(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率;
(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率;
(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.
【详解】
(1)记事件甲连胜四场,则;
(2)记事件为甲输,事件为乙输,事件为丙输,
则四局内结束比赛的概率为
,
所以,需要进行第五场比赛的概率为;
(3)记事件为甲输,事件为乙输,事件为丙输,
记事件甲赢,记事件丙赢,
则甲赢的基本事件包括:、、、
、、、、,
所以,甲赢的概率为.
由对称性可知,乙赢的概率和甲赢的概率相等,
所以丙赢的概率为.
【点睛】
本题考查独立事件概率的计算,解答的关键就是列举出符合条件的基本事件,考查计算能力,属于中等题.
【好题演练】
1.(2022·黑龙江·哈九中三模(理))2021年10月16日,是第41个世界粮食日.黑龙江作为全国粮食生产大省,连续十一年粮食产量位居全国首位.近年来受疫情影响,全国各地经济产值均有所下降.为改变现状,各省均推出支持企业落户创业政策,哈市某企业响应号召,引进一条先进食品生产线,以稻米为原料进行深加工,发明了一种新产品,若该产品的质量指标值为m(),其质量指标等级划分如表:
质量指标值m
[70,75)
[75,80)
[80,85)
[85,90)
[90,95)
[95,100]
质量指标等级
废品
次品
三级
二级
一级
特级
为了解该产品的经济效益并及时调整生产线,该企业先进行试生产,现从试生产的产品中随机抽取了10000件,将其质量指标值m的数据作为样本,绘制如下频率分布直方图:
(1)若将频率作为概率,从这10000件产品中随机抽取2件产品,记事件A为“抽出的产品中至少有1件为二级及以上产品”,求事件A发生的概率;
(2)若从质量指标值m不低于90的样本中利用分层抽样的方法抽取6件产品,然后从这6件产品中任取3件产品,求质量指标值的件数X的分布列及数学期望;
(3)若每件产品的质量指标值m与利润y(单位:元)的关系如表(2
相关试卷
这是一份回归教材重难点06 概率与统计-【查漏补缺】2022年高考数学(文)三轮冲刺过关,文件包含回归教材重难点06概率与统计解析版docx、回归教材重难点06概率与统计原卷版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
这是一份回归教材重难点05 函数与导数-【查漏补缺】2022年高考数学(文)三轮冲刺过关,文件包含回归教材重难点05函数与导数解析版docx、回归教材重难点05函数与导数原卷版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
这是一份回归教材重难点04 圆锥曲线-【查漏补缺】2022年高考数学(文)三轮冲刺过关,文件包含回归教材重难点04圆锥曲线解析版docx、回归教材重难点04圆锥曲线原卷版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。