搜索
    上传资料 赚现金
    英语朗读宝

    【解析版】武珞路中学2022年八年级下期中数学模拟试卷

    【解析版】武珞路中学2022年八年级下期中数学模拟试卷第1页
    【解析版】武珞路中学2022年八年级下期中数学模拟试卷第2页
    【解析版】武珞路中学2022年八年级下期中数学模拟试卷第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【解析版】武珞路中学2022年八年级下期中数学模拟试卷

    展开

    这是一份【解析版】武珞路中学2022年八年级下期中数学模拟试卷,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
     湖北省武汉市武珞路中学2022年八年级下学期期中数学模拟试卷 一、选择题(每小题3分,共30分)1.(3分)有意义,a的取值范围是() A. a≥2 B. a>2 C. a≥﹣2 D. a>﹣2 2.(3分)下列计算,正确的是() A.  B.  C.  D.  3.(3分)化简:正确的是() A.  B.  C. 4 D.  4.(3分)下列各式中属于最简二次根式的是() A.  B.  C.  D.  5.(3分)a、b、c为△ABC三边,不是直角三角形的是() A. a2=c2﹣b2 B. a=,b=1,c= C. ∠A:∠B:∠C=3:4:5 D. a=8k,b=17k,c=15k 6.(3分)下列命题的逆命题是正确的是() A. 若a=b,则a2=b2 B. 若a>0,b>0,则ab>0 C. 等边三角形是锐角三角形 D. 全等三角形的对应边相等 7.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2,则AB=() A. 4 B.  C.  D.  8.(3分)▱ABCD中,BC=10,AC与BD交于O,AO=4,BO=7,△ABC比△DBC周长小() A. 3 B. 4 C. 5 D. 6 9.(3分)下列条件能判定四边形ABCD是平行四边形的是() A. ∠A=∠B,∠C=∠D B. AB∥CD,AD=BC C. AB∥CD,∠A=∠C D. AO=BO,CO=DO 10.(3分)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为() A.  B.  C. 1 D.   二、填空题(每小题3分,共18分)11.(3分)计算:÷=. 12.(3分)已知x=+1,y=﹣1,则x2﹣y2=. 13.(3分)一木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处,木杆折断之前高米. 14.(3分)△ABC中,D、E、F分别为AB、AC、BC的中点,若AC=5,AB=10,BC=7,则△DEF的周长为. 15.(3分)▱ABCD中,AD=12,BD=10,AC=26,则▱ABCD的面积是. 16.(3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于.  三、解答题(共72分)17.(5分)计算: 18.(5分)计算: 19.(6分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF. 20.(6分)如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠BCD是直角吗? 21.(6分)已知a﹣=﹣,求 22.(6分)已知Rt△ABC中,∠C=90°,CH⊥AB于点H,AC=3,CH=2,求BC的长. 23.(6分)▱ABCD中,∠BAD的平分线交直线BC于点E,线DC于点F(1)求证:CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,求∠BDG. 24.(12分)在平面直角坐标系中,A(﹣m,0)、B(n,0),若.如图C在x轴上,BC=2,Q从O向C运动,以AQ、BQ为边作等边△AEQ、等边△FBQ.连接EF,点P为EF中点(1)求A、B两点坐标;(2)求P点运动的路径长为多少?(3)求EF的最小值.   湖北省武汉市武珞路中学2022学年八年级下学期期中数学模拟试卷参考答案与试题解析 一、选择题(每小题3分,共30分)1.(3分)有意义,a的取值范围是() A. a≥2 B. a>2 C. a≥﹣2 D. a>﹣2 考点: 二次根式有意义的条件. 分析: 二次根式的被开方数的非负数.解答: 解:根据题意,得a+2≥0,解得,a≥﹣2;故选C点评: 考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义. 2.(3分)下列计算,正确的是() A.  B.  C.  D.  考点: 二次根式的加减法. 分析: 直接利用二次根式的加减运算法则分别化简求出即可.解答: 解:A、无法计算,故此选项错误;B、+=2=3=5,故此选项错误;C、3=2,正确;D、2+无法计算,故此选项错误;故选:C.点评: 此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键. 3.(3分)化简:正确的是() A.  B.  C. 4 D.  考点: 二次根式的乘除法. 分析: 直接利用二次根式的性质化简求出即可.解答: 解:==故选:D.点评: 此题主要考查了二次根式的除法运算,正确化简二次根式是解题关键. 4.(3分)下列各式中属于最简二次根式的是() A.  B.  C.  D.  考点 最简二次根式. 分析: C选项的被开方数中含有未开尽方的因数;B、D选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.解答: 解:因为B、=C、=2D、=所以,这三个选项都不是最简二次根式.故选A.点评: 在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式. 5.(3分)a、b、c为△ABC三边,不是直角三角形的是() A. a2=c2﹣b2 B. a=,b=1,c= C. ∠A:∠B:∠C=3:4:5 D. a=8k,b=17k,c=15k 考点: 勾股定理的逆定理;三角形内角和定理. 分析: 利用勾股定理的逆定理判断A、B,D选项;用直角三角形各角之间的关系判断C选项.解答: 解:A、∵a2=c2﹣b2,∴a2+b2=c2,∴a、b、c为△ABC三边,是直角三角形,故本选项错误;B、∵b2+c2=a2,∴a、b、c为△ABC三边,是直角三角形,故本选项错误;C、∵∠A:∠B:∠C=3:4:5,∴设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,即3x+4x+5x=180°,解得,x=15°,∴5x=5×15°=75°<90°,∴a、b、c为△ABC三边,不是直角三角形,故本选项正确;D、∵a2+c2=b2,∴a、b、c为△ABC三边,是直角三角形,故本选项错误.故选C.点评: 本题考查的是勾股定理的逆定理及直角三角形的性质,若已知三角形的三边判定其形状时要根据勾股定理判断;若已知三角形各角之间的关系,应根据三角形内角和定理求出最大角的度数或求出两较小角的和再进行判断. 6.(3分)下列命题的逆命题是正确的是() A. 若a=b,则a2=b2 B. 若a>0,b>0,则ab>0 C. 等边三角形是锐角三角形 D. 全等三角形的对应边相等 考点: 命题与定理. 分析: 先交换原命题的题设与结论得到其逆命题,然后分别根据平方根的定义、有理数的性质、等边三角形的判定和全等三角形的判定分别对四个逆命题的真假进行判断.解答: 解:A、逆命题为若a2=b2,则a=b,此逆命题为假命题;B、逆命题为ab>0,则a>0,b>0,此逆命题为假命题;C、逆命题为锐角三角形是等边三角形,此逆命题为假命题;D、逆命题为对应边相等的三角形为全等三角形,此逆命题为真命题.故选D.点评: 本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题. 7.(3分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=2,则AB=() A. 4 B.  C.  D.  考点: 含30度角的直角三角形;勾股定理.分析: 设BC=x,根据含30度角的直角三角形性质求出AB=2BC=2x,根据勾股定理得出方程22+x2=(2x)2,求出x即可.解答: 解:设BC=x,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2x,∵AC=2,∴由勾股定理得:AC2+BC2=AB222+x2=(2x)2解得:x=∴AB=2x=故选C.点评: 本题考查了勾股定理,含30度角的直角三角形性质的应用,解此题的关键是能得出AB=2BC,用了方程思想. 8.(3分)▱ABCD中,BC=10,AC与BD交于O,AO=4,BO=7,△ABC比△DBC周长小() A. 3 B. 4 C. 5 D. 6 考点: 平行四边形的性质. 分析: 由平行四边形的性质得出AB=CD,OA=OC=4,OB=OD=7,得出AC、BD,由三角形的周长即可得出结果.解答: 解:∵四边形ABCD是平行四边形,∴AB=CD,OA=OC=4,OB=OD=7,∴AC=8,BD=14,∴△DBC的周长﹣△ABC的周长=(BC+CD+BD)﹣(AB+BC+AC)=BD﹣AC=14﹣8=6;故选:D.点评: 题考查了平行四边形的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键. 9.(3分)下列条件能判定四边形ABCD是平行四边形的是() A. ∠A=∠B,∠C=∠D B. AB∥CD,AD=BC C. AB∥CD,∠A=∠C D. AO=BO,CO=DO 考点: 平行四边形的判定. 分析: 根据平行四边形的判定定理:两组对角分别相等的四边形是平行四边形可得答案.解答: 解:A、∠A=∠B,∠C=∠D不能判定四边形ABCD是平行四边形,故此选项错误;B、AB∥CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;C、AB∥CD,∠A=∠C可证出∠B=∠D,能判定四边形ABCD是平行四边形,故此选项正确;D、AO=BO,CO=DO不能判定四边形ABCD是平行四边形,故此选项错误;故选:C.点评: 此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形. 10.(3分)如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为() A.  B.  C. 1 D.  考点: 勾股定理;等腰三角形的性质;含30度角的直角三角形;等腰直角三角形. 分析: 过F点作FG∥BC.根据等腰三角形的性质和三角形内角和定理可得AF=CF,在Rt△CDF中,根据三角函数可得AF=CF=2,DF=,根据平行线分线段成比例可得比例式GF:BD=AF:AD,求得GF=4﹣2,再根据平行线分线段成比例可得比例式EF:EC=GF:BC,依此即可得到EF=﹣1.解答: 解:过F点作FG∥BC.∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=CD=BC=1,∠BAD=∠CAD=∠BAC=15°,AD⊥BC,∵∠ACE=∠BAC,∴∠CAD=∠ACE=15°,∴AF=CF,∵∠ACD=(180°﹣30°)÷2=75°,∴∠DCE=75°﹣15°=60°,在Rt△CDF中,AF=CF==2,DF=CD•tan60°=∵FG∥BC,∴GF:BD=AF:AD,即GF:1=2:(2+),解得GF=4﹣2∴EF:EC=GF:BC,即EF:(EF+2)=(4﹣2):2,解得EF=﹣1.故选:A.点评: 综合考查了等腰三角形的性质,三角形内角和定理可得,三角函数,平行线分线段成比例,以及方程思想,本题的难点是作出辅助线,寻找解题的途径. 二、填空题(每小题3分,共18分)11.(3分)计算:÷=3 考点: 二次根式的乘除法. 分析: 根据二次根式是除法法则进行计算.解答: 解:原式====3故答案是:3点评: 本题考查了二次根式的乘除法.二次根式的除法法则:÷=(a≥0,b>0). 12.(3分)已知x=+1,y=﹣1,则x2﹣y2= 考点: 二次根式的化简求值. 分析: 先分解因式,再代入比较简便.解答: 解:x2﹣y2=(x+y)(x﹣y)=2×2=4点评: 注意分解因式在代数式求值中的作用. 13.(3分)一木杆在离地面3米处折断,木杆顶端落在离木杆底端4米处,木杆折断之前高8米. 考点: 勾股定理的应用. 分析: 由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.解答: 解:∵一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树杆底部4米处,∴折断的部分长为 =5,∴折断前高度为5+3=8(米).故答案为:8.点评: 此题考查了勾股定理的应用,主要考查学生对勾股定理在实际生活中的运用能力. 14.(3分)△ABC中,D、E、F分别为AB、AC、BC的中点,若AC=5,AB=10,BC=7,则△DEF的周长为11 考点: 三角形中位线定理. 分析: 由于D、E分别是AB、AC的中点,则DE是△ABC的中位线,那么DE=BC,同理有EF=AB,DF=AC,于是易求△DEF的周长.解答: 解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC,同理有EF=AB,DF=AC,∴△DEF的周长=(AC+BC+AB)=×(10+5+7)=11.故答案为:11点评: 本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系. 15.(3分)▱ABCD中,AD=12,BD=10,AC=26,则▱ABCD的面积是120 考点: 平行四边形的性质. 分析: 首先根据题意作出图形,然后设AC与BD相较于点O,由▱ABCD中,AD=12,BD=10,AC=26,求得OD,OA的长,利用勾股定理的逆定理即可证得△AOD是直角三角形,继而求得答案.解答: 解:设AC与BD相较于点O,∵▱ABCD中,BD=10,AC=26,∴OD=5,OA=13,∵AD=12,∴AD2+OD2=OA2∴△AOD是直角三角形,即∠ADO=90°,∴S▱ABCD=AD•BD=120.故答案为:120.点评: 此题考查了平行四边形的性质以及勾股定理的逆定理.注意证得△AOD是直角三角形是关键. 16.(3分)在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于12或20 考点: 平行四边形的性质. 专题: 压轴题;分类讨论.分析: 根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.解答: 解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2∴EC==2,AB=CD=5,BE==3,∴AD=BC=5,∴▱ABCD的周长等于:20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.点评: 此题主要考查了平行四边形的性质以及勾股定理等知识,利用分类讨论得出是解题关键. 三、解答题(共72分)17.(5分)计算: 考点: 二次根式的乘除法. 分析: 首先化简二次根式,进而利用二次根式的乘除运算法则求出即可.解答: 解:原式=3×5×=15.点评: 此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键. 18.(5分)计算: 考点: 二次根式的加减法. 分析: 直接利用二次根式的性质化简二次根式进而得出即可.解答: 解:原式=2+2﹣3+=2+3﹣3.点评: 此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键. 19.(6分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF. 考点: 平行四边形的性质. 专题: 证明题.分析: 根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可.解答: 证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,∴△DFO≌△BEO(ASA),∴OE=OF.点评: 本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用,关键是推出△DFO≌△BEO. 20.(6分)如图,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠BCD是直角吗? 考点: 勾股定理;勾股定理的逆定理. 分析: (1)利用四边形ABCD所在矩形面积﹣周围三角形面积进而求出其面积,再利用勾股定理得出其周长;(2)利用勾股定理的逆定理求出∠BCD是直角.解答: 解:(1)四边形ABCD的面积为:25﹣×1×5﹣×1×4﹣×1×2﹣×2×4=15.5;周长为:AB+BC+CD+AD=+2++=+3+ (2)连接BD,∵BC2+CD2=20+5=25,BD2=25,∴BC2+CD2=BD2∴△BCD是直角三角形,∴∠BCD是直角.点评: 此题主要考查了勾股定理以及勾股定理的逆定理,正确应用勾股定理是解题关键. 21.(6分)已知a﹣=﹣,求 考点: 二次根式的化简求值. 专题: 计算题.分析: 先把已知条件两边平方得到(a﹣2=5,再利用完全平方公式变形得到(a+2=9,则a+=3(a>0),则可计算出(2=a﹣2+=1,然后根据平方根的定义求解.解答: 解:∵a﹣=﹣∴(a﹣2=5,∴(a+2﹣4=5,∴(a+2=9,∴a+=3或a+=﹣3(因为a>0,故舍去)∴(2=a﹣2+=3﹣2=1,=±1.点评: 本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰. 22.(6分)已知Rt△ABC中,∠C=90°,CH⊥AB于点H,AC=3,CH=2,求BC的长. 考点: 射影定理. 分析: 根据勾股定理求得AB的长度,然后利用射影定理来求得BH、BC的长度.解答: 解:∵Rt△ABC中,∠C=90°,CH⊥AB于点H,AC=3,CH=2,∴AH2=AC2﹣CH2=5.∴AH=又∵CH2=AH•BH,∴BH==∴BC2=BH•AB=×(+)=,则BC=点评: 本题考查了射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项. 23.(6分)▱ABCD中,∠BAD的平分线交直线BC于点E,线DC于点F(1)求证:CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,求∠BDG. 考点: 平行四边形的性质;等边三角形的判定与性质. 分析: (1)由角平分线的定义得出∠BAE=∠DAE,由平行四边形的性质得出∠CEF=∠DAF,∠CFE=∠BAE,得出∠CEF=∠CFE,即可得出结论;(2)连接EG,CG,先证明四边形ECFG为菱形,得出∠CFG=60°,△CFG为等边三角形,再证明△DGF≌△BGC,得出BG=DG,∠BGC=∠DGF,得出∠BGD=∠CGF=60°,证出△BDG为等边三角形,即可得出结论.解答: 证明:(1)∵AF平分∠BAD,∴∠BAE=∠DAE,又AB∥BC,∴∠CEF=∠DAF,∵AB∥CD,∴∠CFE=∠BAE,∴∠CEF=∠CFE,∴CE=CF;(2)连接EG,CG,如图所示:∵AB∥CD,∴∠ECF=∠ABC=120°,∠BAC=60°,∴∠DAF=30°,∵FG∥CE,FG=CE,∴四边形ECFG是平行四边形,∵CE=CF,∴四边形ECFG为菱形,∴∠CFG=60°,∠CFE=30°=∠DAF,∠ECG=∠FCG=60°,△CFG为等边三角形,∴CG=GF,∠BCG=∠DFG=60°,AD=FD=BC,在△DGF和△BGC中,∴△DGF≌△BGC(SAS),∴BG=DG,∠BGC=∠DGF,∴∠BGD=∠CGF=60°,∴△BDG为等边三角形,∴∠BDG=60°.点评: 本题考查了平行四边形的性质、全等三角形的判定与性质、等边三角形的判定与性质、菱形的判定与性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键. 24.(12分)在平面直角坐标系中,A(﹣m,0)、B(n,0),若.如图C在x轴上,BC=2,Q从O向C运动,以AQ、BQ为边作等边△AEQ、等边△FBQ.连接EF,点P为EF中点(1)求A、B两点坐标;(2)求P点运动的路径长为多少?(3)求EF的最小值. 考点: 一次函数综合题. 专题: 综合题.分析: (1)根据被开方数为非负数求出m与n的值,即可确定出A与B的坐标;(2)如图1所示,延长AE,BF交于点H,则△ABH为等边三角形,再由三角形AEQ与三角形BGF为等边三角形,得到两对同位角相等,利用同位角相等两直线平行得到EQ与AH平行,EQ与BH平行,进而确定出四边形EQFH为平行四边形,根据P为EF的中点,得到P为HQ的中点,随着点Q从O点向C点运动,点P也由P1运动到P2,利用中位线定理求出P点运动的路径长即可;(3)如图2所示,设出OQ=m,表示出MQ,NQ,EM,FN,以及FD,EF,可得出当m=1时EF最小,求出EF的最小值即可.解答: 解:(1)∵n=++4,∴m=2,n=4,即A(﹣2,0),B(4,0);(2)如图1所示,延长AE,BF交于点H,则△ABH为等边三角形,∵△AEQ与△BFQ都为等边三角形,∴∠EAQ=∠FQB=60°,∠AQE=∠QBF=60°,∴FQ∥AH,EQ∥BH,∴四边形EQFH为平行四边形,∵P为EF的中点,∴P为HQ中点,随着点Q从O点向C点运动,点P也由P1运动到P2∴P1P2=OC=1,即P运动的路径为1;(3)如图2所示,设OQ=m(0≤m≤2),则MQ=AQ=m+1,NQ=BQ=﹣m+2,EM=MQ=m+FN=NQ=﹣m+2,FD=FN﹣EM=﹣m+,EF===当m=1时,EF有最小值为EF=3.点评: 此题属于一次函数综合题,涉及的知识有:等边三角形的性质,平行线的判定与性质,坐标与图形性质,二次根式的性质,以及中位线定理,熟练掌握中位线定理是解本题第二问的关键.  

    相关试卷

    2022-2023学年湖北省武汉市武昌区武珞路中学七年级(下)期中数学试卷(含解析):

    这是一份2022-2023学年湖北省武汉市武昌区武珞路中学七年级(下)期中数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年湖北省武汉市武珞路中学八年级(下)期中数学试卷(含解析):

    这是一份2022-2023学年湖北省武汉市武珞路中学八年级(下)期中数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020-2021学年湖北省武汉市武昌区武珞路中学八年级(下)期中数学试卷:

    这是一份2020-2021学年湖北省武汉市武昌区武珞路中学八年级(下)期中数学试卷,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map