![浙江温州2022年中考数学复习 专题5(1)—几何填空(包括相似及三角函数)无答案第1页](http://img-preview.51jiaoxi.com/2/3/13188570/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江温州2022年中考数学复习 专题5(1)—几何填空(包括相似及三角函数)无答案第2页](http://img-preview.51jiaoxi.com/2/3/13188570/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![浙江温州2022年中考数学复习 专题5(1)—几何填空(包括相似及三角函数)无答案第3页](http://img-preview.51jiaoxi.com/2/3/13188570/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
浙江温州2022年中考数学复习 专题5(1)—几何填空(包括相似及三角函数)无答案
展开
这是一份浙江温州2022年中考数学复习 专题5(1)—几何填空(包括相似及三角函数)无答案,共11页。试卷主要包含了图1是一种折叠式晾衣架等内容,欢迎下载使用。
1.图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的d的值为 ___________;记图1中小正方形的中心为点A,B,C,图2中的对应点为点A′,B′,C′.以大正方形的中心O为圆心作圆,则当点A′,B′,C′在圆内或圆上时,圆的最小面积为 _______ 2.如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为________米,BC为_______米. 3.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为___________cm. 4.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_________分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'-BE为___分米.
5.如图,直线y=-x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为 _________ 6.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为_________cm. 7.如图,在平面直角坐标系中,▱OABC的顶点A在x轴的正半轴上,C为(2,4),CD⊥AB于点D,反比例函数y=恰好经过点C,D,则点D的坐标为_________ 8.四个全等的直角三角形如图摆放成一个风车的形状,形成正方形ABCD和正方形IJKL.若BF平分∠ABK,AF:FK=5:3,风车外周长为10+6,则四个直角三角形的面积和是__________ 9.工人师傅在正中间立着一根圆形排水管的正方形地面(如图①)铺瓷砖,先裁出四块全等直角三角形ABC的瓷砖如图②,再在AB边上各切割一个弓形(阴影部分),然后围着排水管拼接而成(不重叠,无缝隙)如图③所示.已知∠BAC=90°,切割点分别为A1,A2,A3,A4,A5,A6,A7,A8,依次连接这8个点恰好组成正八边形,AB-AC=(4+2)cm,则AA1=________cm;如果π取3,那么切去的每块弓形面积为_______cm2.
10.如图,点O为平行四边形ABCD的对角线AC和BD的交点,点E为边BC的中点,连接AE交BD于点F,则的值为________ 11.某游乐场经过改造之后游客明显增多,现需要在入口处增建一个大型售货亭如图1.小羽设计该售货亭主体结构,其侧面为Rt△ABE与矩形BCDE组合而成如图2,其中∠A=90°,AE=2.4米,BE=5.1米,A点到地面CD的距离5米,已知立柱BC造价每米400元,立柱DE造价每米340元.则图2中立柱DE的造价为______元.在综合考虑造价与占地面积后,小哲在图2的基础上保持Rt△ABE形状大小以及点A到地面CD的距离不变,给出图3的设计,此时DE=3.08米,则图3中立柱BC的造价为________元.
12.如图1是一种简约隐形壁挂式折叠凳,图2是其开启过程的侧面结构示意图,具体数据如图所示(单位:cm),外框宽HD=EG,闭合时,点A与点D重合,点C与点E重合,则外框宽HD为 ____cm;当折叠凳转为半开启状态(A′B′所在的直线过EB中点)时,折叠凳上升的高度为 _______cm.
13.数学兴趣小组计划测量公路上路灯的高度AB,准备了标杆CD,EF及皮尺,按如图竖直放置标杆CD与EF.已知CD=EF=2米,DF=2米,在路灯的照射下,标杆CD的顶端C在EF上留下的影子为G,标杆EF在地面上的影子是FH,测得FG=0.5米,FH=4米,则路灯的高度AB=_______米. 14.如图甲是由一个正方形ABCD、一个矩形CEFG及一个圆组成,其中点B,C,E在同一水平线上,BC=CE=15,圆与AD切于点P,圆与CG切于点G,根据四边形的不稳定性由图甲变成图乙,两个四边形的形状发生改变,边长没有改变,此时,图乙中四边形CEFG的对角线GE⊥CE,圆的大小没有改变但位置发生移动,仍然与AD切于点P,圆与CG切于点H,且点H到AD的距离为4,则切点P在AD上移动的距离为______.
15.如图,直线l1:y=x+3分别与x轴,y轴交于点A,B,直线l2:y=-x+m分别与x轴,y轴交于点C,D,直线l1,l2相交于点E,将△ABO向右平移5个单位得到△A′B'O',若点B′恰好落在直线l2上,则DE:B'C=_________
16.某厂家设计一种双层长方体垃圾桶,AB=70cm,BC=25cm,CP=30cm,侧面如图1所示,EG为隔板,等分上下两层.下方内桶BCGH绕底部轴(CP)旋转打开,若点H恰好能卡在原来点G的位置,则内桶边BH的长度应设计为__________cm;现将BH调整为25cm,打开最大角度时,点H卡在隔板上,如图2所示,可完全放入下方内桶的球体的直径不大于_________cm.
17.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,OC=5,则=_______ 18.如图1是一种浴室壁挂式圆形镜面折叠镜,AB,CD,EF可在水平面上转动,连接轴BD分别垂直AB和CD,EF过圆心,点C在EF的中垂线上,且CD=EF,AB=24cm.如图2是折叠镜俯视图,墙面PI与PQ互相垂直,在折叠镜转动过程中,EF与墙面PI始终保持平行,当点E落在PQ上时,AE=30cm,此时A,B,F三点共线,则EF=__________cm;将AB绕点A逆时针旋转至AB′,当B'C′⊥AB′时,测得点B′与E′到PQ的距离之比B'G:E′H=16:11,则B'G=_________cm.
19.如图1是某激光黑白A4纸张打印机的机身,其侧面示意图如图2,AB⊥BC,CD⊥BC.出纸盘EP下方为一段以O为圆心的圆弧,与上部面板线段AE相接于点E,与CD相切于点D.测得BC=24cm,CD=18cm.进纸盘CH可以随调节扣HF向右平移,CH=18cm,HF=2cm.当HF向右移动6cm至H′F′时,点A,D,F'在同一直线上,则AB的长度为 _______cm.若点E到AB的距离为16cm,tanA=4,连接PO,线段OP恰好过的中点.若PE=2cm,则点P到直线BC的距离为 ________cm. 20.如图1,这是一个装有货物的长方体形状的木箱沿着坡面装进汽车货箱的立体示意图,图2是它的平面示意图.已知汽车货箱高度BG=2m,货箱底面距地面的高度BH=0.6m,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2m,高(EF)为1.6m,宽小于汽车货箱的宽度.已知sina=,木箱底部顶点C与坡面底部点A重合,则木箱底部悬空部分BF的长为__________m,木箱上部顶点E到汽车货箱顶部NG的距离为_______m.
21.如图1是两扇推拉门,AB是门槛,AD,BC是可转动门宽,现将两扇门推到如图2的位置(平面示意图),其中tan∠DAB=,tan∠CBA=,测得C,D间的距离为4dm,则门槛AB的长为 __________dm.
22.如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),且AC=BD,AF∥BE,sin∠BAF=0.8,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长CD′.已知直线BE⊥B′E′,CD′=2CD,那么AB的长为_________ cm,CD′的长为________ cm.
23.如图1,书柜ABCD中放了7本厚度一样,高度分别为20cm和25cm的小书和大书,搬运过程中大书恰好倾斜成图2所示,则书柜的长AB为 ________cm.
24.图1是一种儿童可折叠滑板车,该滑板车完全展开后示意图如图2所示,由车架AB-CE-EF和两个大小相同的车轮组成,已知CD=25cm,DE=17cm,cos∠ACD=,当A,E,F在同一水平高度上时,∠CEF=135°,则AC=_____cm;为方便存放,将车架前部分绕着点D旋转至AB∥EF,如图3所示,则d1-d2为 ___cm.
25.如图,一次函数y=-x+3的图象与x轴,y轴分别交于A,B两点.C是线段AB上一点,CD⊥OA于点D.CE⊥OB于点E.OD=2OE,则点C的坐标为________ 26.图1是某个零件横截面的示意图,已知AB=CD,∠B=∠C,为了求出BC的长度,小王将宽度为2cm的直尺按图2、图3、图4的三种方式摆放,所测得的具体数据(单位:cm)如图所示,则AB=________cm,BC=________cm.
27.如图是一款利用杠杆原理设计的平衡灯,灯管AB与支架AD,砝码杆AC均成120°角,且AB=40cm,AC=18cm,AD=6cm,底座是半径为2cm的圆柱体,点P是杠杆的支点.如图1,若砝码E在端点C时,当杠杆平衡时,支架AD垂直于桌面,则此时垂直光线照射到最远点M到支点P的距离PM为 ________cm.由于特殊设计,灯管的重力集中在端点B,砝码杆重力集中在砝码E上,支架AD的重力忽略不计,由杠杆原理可知,平衡时重力保持垂直水平桌面向下,且G1•h2=G2•h1,如图2.为了使得平衡时砝码杆与桌面平行,则砝码E到离A点的距离为 __________cm.
28.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D,E分别是边CA,CB的中点,∠CAB的平分线与DE交于点F,则CF的长为__________ 29.如图,在矩形ABCD中,AB=10,AD=12,点N是AB边上的中点,点M是BC边上的一动点连接MN,将△BMN沿MN折叠,若点B的对应点B′,连接B′C,当△B′MC为直角三角形时,BM的长为__________
相关试卷
这是一份浙江温州2022年中考数学复习 专题5(2)—几何选择(包括相似及三角函数)无答案,共21页。试卷主要包含了图1是第七届国际数学教育大会等内容,欢迎下载使用。
这是一份浙江温州2022年中考数学复习 专题2—填空压轴(无答案),共14页。
这是一份浙江温州2022年中考数学复习 专题3—方程(无答案),共16页。试卷主要包含了一家工艺品厂按计件方式结算工资,某公司生产的一种营养品信息如表等内容,欢迎下载使用。