|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省绍兴市诸暨市重点名校2022年中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    浙江省绍兴市诸暨市重点名校2022年中考数学全真模拟试题含解析01
    浙江省绍兴市诸暨市重点名校2022年中考数学全真模拟试题含解析02
    浙江省绍兴市诸暨市重点名校2022年中考数学全真模拟试题含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省绍兴市诸暨市重点名校2022年中考数学全真模拟试题含解析

    展开
    这是一份浙江省绍兴市诸暨市重点名校2022年中考数学全真模拟试题含解析,共25页。试卷主要包含了下列各数中,最小的数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为(  )
    A.m> B.m C.m= D.m=
    2.如图,DE是线段AB的中垂线,,,,则点A到BC的距离是  

    A.4 B. C.5 D.6
    3.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
    A. B.x(x+1)=1980
    C.2x(x+1)=1980 D.x(x-1)=1980
    4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是(  )
    A.8 B.9 C.10 D.11
    5.若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )
    A.矩形 B.菱形
    C.对角线互相垂直的四边形 D.对角线相等的四边形
    6.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是(  )

    A.60cm2 B.50cm2 C.40cm2 D.30cm2
    7.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是(  )

    A.① B.③ C.②或④ D.①或③
    8.下列各数中,最小的数是
    A. B. C.0 D.
    9.下列各数中,最小的数是( )
    A.0 B. C. D.
    10.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是(  )
    A. cm B.2 cm C.2cm D. cm
    11.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是(  )
    A. B. C. D.
    12.图为小明和小红两人的解题过程.下列叙述正确的是( )
    计算:+

    A.只有小明的正确 B.只有小红的正确
    C.小明、小红都正确 D.小明、小红都不正确
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .
    14.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.

    15.已知圆锥的高为3,底面圆的直径为8,则圆锥的侧面积为_____.
    16.若关于的一元二次方程无实数根,则一次函数的图象不经过第_________象限.
    17.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.
    18.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.
    (1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;
    (2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.

    20.(6分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
    (1)求李华选择的美食是羊肉泡馍的概率;
    (2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.
    21.(6分)计算下列各题:
    (1)tan45°−sin60°•cos30°;
    (2)sin230°+sin45°•tan30°.
    22.(8分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.
    (1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)
    (2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
    (3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.

    23.(8分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.

    (1)求证:△AEF≌△DEB;
    (2)证明四边形ADCF是菱形;
    (3)若AC=4,AB=5,求菱形ADCFD 的面积.
    24.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
    分 组
    频数
    频率
    第一组(0≤x<15)
    3
    0.15
    第二组(15≤x<30)
    6
    a
    第三组(30≤x<45)
    7
    0.35
    第四组(45≤x<60)
    b
    0.20
    (1)频数分布表中a=_____,b=_____,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?

    25.(10分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.

    (1)求证:AE=BF;
    (2)连接GB,EF,求证:GB∥EF;
    (3)若AE=1,EB=2,求DG的长.
    26.(12分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.
    综合运用:在你所作的图中,AB与⊙O的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.

    27.(12分)如图,抛物线(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
    (1)求抛物线的解析式;
    (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
    (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,
    ∴△=32-4×2m=9-8m=0,
    解得:m=.
    故选C.
    2、A
    【解析】
    作于利用直角三角形30度角的性质即可解决问题.
    【详解】
    解:作于H.

    垂直平分线段AB,






    ,,

    故选A.
    【点睛】
    本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
    3、D
    【解析】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.
    【详解】
    根据题意得:每人要赠送(x﹣1)张相片,有x个人,
    ∴全班共送:(x﹣1)x=1980,
    故选D.
    【点睛】
    此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
    4、A
    【解析】
    分析:根据多边形的内角和公式及外角的特征计算.
    详解:多边形的外角和是360°,根据题意得:
    110°•(n-2)=3×360°
    解得n=1.
    故选A.
    点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
    5、C
    【解析】
    【分析】如图,根据三角形的中位线定理得到EH∥FG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案.
    【点睛】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,
    ∴EH=AC,EH∥AC,FG=AC,FG∥AC,EF=BD,
    ∴EH∥FG,EH=FG,
    ∴四边形EFGH是平行四边形,
    假设AC=BD,
    ∵EH=AC,EF=BD,
    则EF=EH,
    ∴平行四边形EFGH是菱形,
    即只有具备AC=BD即可推出四边形是菱形,
    故选D.

    【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.
    6、D
    【解析】
    标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出,即,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.
    【详解】
    解:如图,∵正方形的边DE∥CF,
    ∴∠B=∠AED,
    ∵∠ADE=∠EFB=90°,
    ∴△ADE∽△EFB,
    ∴,
    ∴,
    设BF=3a,则EF=5a,
    ∴BC=3a+5a=8a,
    AC=8a×=a,
    在Rt△ABC中,AC1+BC1=AB1,
    即(a)1+(8a)1=(10+6)1,
    解得a1=,
    红、蓝两张纸片的面积之和=×a×8a-(5a)1,
    =a1-15a1,
    =a1,
    =×,
    =30cm1.
    故选D.
    【点睛】
    本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.
    7、D
    【解析】
    分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
    【详解】
    分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,再增加到,图象③符合;
    ②当点P逆时针旋转时,BP的长从降到0,再增加到2,再降到,图象①符合.
    故答案为①或③.
    故选D.
    【点睛】
    本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
    8、A
    【解析】
    应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
    【详解】
    解:因为在数轴上-3在其他数的左边,所以-3最小;
    故选A.
    【点睛】
    此题考负数的大小比较,应理解数字大的负数反而小.
    9、D
    【解析】
    根据实数大小比较法则判断即可.
    【详解】
    <0<1<,
    故选D.
    【点睛】
    本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.
    10、B
    【解析】
    由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
    【详解】
    解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
    故选择B.
    【点睛】
    本题考查了圆锥的概念和弧长的计算.
    11、D
    【解析】
    根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.
    【详解】
    解:∵ab<0,
    ∴分两种情况:
    (1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
    (2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.
    故选D
    【点睛】
    本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.
    12、D
    【解析】
    直接利用分式的加减运算法则计算得出答案.
    【详解】
    解:
    =﹣+
    =﹣+

    =,
    故小明、小红都不正确.
    故选:D.
    【点睛】
    此题主要考查了分式的加减运算,正确进行通分运算是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、9
    【解析】
    解:360÷40=9,即这个多边形的边数是9
    14、8π﹣8
    【解析】
    连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.
    【详解】
    连接EF、OC交于点H,
    则OH=2,
    ∴FH=OH×tan30°=2,
    ∴菱形FOEC的面积=×4×4=8,
    扇形OAB的面积==8π,
    则阴影部分的面积为8π﹣8,
    故答案为8π﹣8.

    【点睛】
    本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.
    15、20π
    【解析】
    利用勾股定理可求得圆锥的母线长,然后根据圆锥的侧面积公式进行计算即可.
    【详解】
    底面直径为8,底面半径=4,底面周长=8π,
    由勾股定理得,母线长==5,
    故圆锥的侧面积=×8π×5=20π,
    故答案为:20π.
    【点睛】
    本题主要考查了圆锥的侧面积的计算方法.解题的关键是熟记圆锥的侧面展开扇形的面积计算方法.
    16、一
    【解析】
    根据一元二次方程的定义和判别式的意义得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根据一次函数的性质判断一次函数y=mx+m的图象所在的象限即可.
    【详解】
    ∵关于x的一元二次方程mx2-2x-1=0无实数根,
    ∴m≠0且△=(-2)2-4m×(-1)<0,
    ∴m<-1,
    ∴一次函数y=mx+m的图象经过第二、三、四象限,不经过第一象限.
    故答案为一.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.
    17、2
    【解析】
    把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.
    【详解】
    ∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),
    ∴1= -4+2(m-1)+3,解得m=2,故答案为2.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.
    18、甲
    【解析】
    由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
    则S2甲 故答案为甲.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)作图见解析;;(2)作图见解析.
    【解析】
    试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.
    试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.

    考点:1轴对称;2勾股定理.
    20、(1);(2)见解析.
    【解析】
    (1)直接根据概率的意义求解即可;
    (2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.
    【详解】
    解:(1)李华选择的美食是羊肉泡馍的概率为;
    (2)列表得:

    E
    F
    G
    H
    A
    AE
    AF
    AG
    AH
    B
    BE
    BF
    BG
    BH
    C
    CE
    CF
    CG
    CH
    D
    DE
    DF
    DG
    DH
    由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,
    所以李华和王涛选择的美食都是凉皮的概率为=.
    【点睛】
    本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1);(2).
    【解析】
    (1)原式=1﹣×=1﹣=;
    (2)原式=×+×=.
    【点睛】
    本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.
    22、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)
    【解析】
    (1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;
    (2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;
    (1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.
    【详解】
    解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,
    解得:b=﹣2,c=﹣1,
    ∴抛物线的解析式为.
    ∵令,解得:,,
    ∴点B的坐标为(﹣1,0).
    故答案为﹣2;﹣1;(﹣1,0).
    (2)存在.理由:如图所示:

    ①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).
    设AC的解析式为y=kx﹣1.
    ∵将点A的坐标代入得1k﹣1=0,解得k=1,
    ∴直线AC的解析式为y=x﹣1,
    ∴直线CP1的解析式为y=﹣x﹣1.
    ∵将y=﹣x﹣1与联立解得,(舍去),
    ∴点P1的坐标为(1,﹣4).
    ②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.
    ∵将x=1,y=0代入得:﹣1+b=0,解得b=1,
    ∴直线AP2的解析式为y=﹣x+1.
    ∵将y=﹣x+1与联立解得=﹣2,=1(舍去),
    ∴点P2的坐标为(﹣2,5).
    综上所述,P的坐标是(1,﹣4)或(﹣2,5).
    (1)如图2所示:连接OD.

    由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
    由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,
    ∴D是AC的中点.
    又∵DF∥OC,
    ∴DF=OC=,
    ∴点P的纵坐标是,
    ∴,解得:x=,
    ∴当EF最短时,点P的坐标是:(,)或(,).
    23、(1)证明详见解析;(2)证明详见解析;(3)1.
    【解析】
    (1)利用平行线的性质及中点的定义,可利用AAS证得结论;
    (2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;
    (3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.
    【详解】
    (1)证明:∵AF∥BC,
    ∴∠AFE=∠DBE,
    ∵E是AD的中点,
    ∴AE=DE,
    在△AFE和△DBE中,

    ∴△AFE≌△DBE(AAS);
    (2)证明:由(1)知,△AFE≌△DBE,则AF=DB.
    ∵AD为BC边上的中线
    ∴DB=DC,
    ∴AF=CD.
    ∵AF∥BC,
    ∴四边形ADCF是平行四边形,
    ∵∠BAC=90°,D是BC的中点,E是AD的中点,
    ∴AD=DC=BC,
    ∴四边形ADCF是菱形;
    (3)连接DF,

    ∵AF∥BD,AF=BD,
    ∴四边形ABDF是平行四边形,
    ∴DF=AB=5,
    ∵四边形ADCF是菱形,
    ∴S菱形ADCF=AC▪DF=×4×5=1.
    【点睛】
    本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
    24、0.3 4
    【解析】
    (1)由统计图易得a与b的值,继而将统计图补充完整;
    (2)利用用样本估计总体的知识求解即可求得答案;
    (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.
    【详解】
    (1)a=1﹣0.15﹣0.35﹣0.20=0.3;
    ∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);
    故答案为0.3,4;
    补全统计图得:

    (2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);
    (3)画树状图得:

    ∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.
    【点睛】
    本题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    25、(1)详见解析;(2)详见解析;(3).
    【解析】
    (1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;
    (2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;
    (3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.
    (1)证明:连接BD,
    在Rt△ABC中,∠ABC=90°,AB=BC,
    ∴∠A=∠C=45°,
    ∵AB为圆O的直径,
    ∴∠ADB=90°,即BD⊥AC,
    ∴AD=DC=BD=AC,∠CBD=∠C=45°,
    ∴∠A=∠FBD,
    ∵DF⊥DG,
    ∴∠FDG=90°,
    ∴∠FDB+∠BDG=90°,
    ∵∠EDA+∠BDG=90°,
    ∴∠EDA=∠FDB,
    在△AED和△BFD中,
    ∠A=∠FBD,AD=BD,∠EDA=∠FDB,
    ∴△AED≌△BFD(ASA),
    ∴AE=BF;
    (2)证明:连接EF,BG,

    ∵△AED≌△BFD,
    ∴DE=DF,
    ∵∠EDF=90°,
    ∴△EDF是等腰直角三角形,
    ∴∠DEF=45°,
    ∵∠G=∠A=45°,
    ∴∠G=∠DEF,
    ∴GB∥EF;
    (3)∵AE=BF,AE=1,
    ∴BF=1,
    在Rt△EBF中,∠EBF=90°,
    ∴根据勾股定理得:EF2=EB2+BF2,
    ∵EB=2,BF=1,
    ∴EF=,
    ∵△DEF为等腰直角三角形,∠EDF=90°,
    ∴cos∠DEF=,
    ∵EF=,
    ∴DE=×,
    ∵∠G=∠A,∠GEB=∠AED,
    ∴△GEB∽△AED,
    ∴,即GE•ED=AE•EB,
    ∴•GE=2,即GE=,
    则GD=GE+ED=.
    26、(1)作图见解析;(2)作图见解析;综合运用:(1)相切;(2)⊙O 的半径为.
    【解析】
    综合运用:(1)根据角平分线上的点到角两边的距离相等可得AB与⊙O的位置关系是相切;
    (2)首先根据勾股定理计算出AB的长,再设半径为x,则OC=OD=x,BO=(12-x)再次利用勾股定理可得方程x2+82=(12-x)2,再解方程即可.
    【详解】
    (1)①作∠BAC的平分线,交BC于点O;
    ②以O为圆心,OC为半径作圆.AB与⊙O的位置关系是相切.

    (2)相切;
    ∵AC=5,BC=12,
    ∴AD=5,AB==13,
    ∴DB=AB-AD=13-5=8,
    设半径为x,则OC=OD=x,BO=(12-x)
    x2+82=(12-x)2,
    解得:x=.
    答:⊙O的半径为.
    【点睛】
    本题考查了1.作图—复杂作图;2.角平分线的性质;3.勾股定理;4.切线的判定.
    27、(1);(2)(,0);(3)1,M(2,﹣3).
    【解析】
    试题分析:方法一:
    (1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
    (2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.
    (3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.
    方法二:
    (1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.
    (2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.
    (3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.
    试题解析:解:方法一:
    (1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
    (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);
    ∴OA=1,OC=2,OB=1,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;
    ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;
    所以该外接圆的圆心为AB的中点,且坐标为:(,0).
    (3)已求得:B(1,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;
    设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:
    x+b=,即:,且△=0;
    ∴1﹣1×(﹣2﹣b)=0,即b=﹣1;
    ∴直线l:y=x﹣1.
    所以点M即直线l和抛物线的唯一交点,有:,解得:
    即 M(2,﹣3).
    过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.
    方法二:
    (1)将B(1,0)代入抛物线的解析式中,得: 0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.
    (2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC= =﹣2,KBC= =,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).
    (3)过点M作x轴的垂线交BC′于H,∵B(1,0),C(0,﹣2),∴lBC:y=x﹣2,设H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴当t=2时,S有最大值1,∴M(2,﹣3).

    点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.

    相关试卷

    浙江省绍兴市诸暨市重点名校2022年中考数学最后冲刺模拟试卷含解析: 这是一份浙江省绍兴市诸暨市重点名校2022年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了答题时请按要求用笔,下列各组数中,互为相反数的是,cs30°的相反数是等内容,欢迎下载使用。

    2022年浙江省绍兴县重点达标名校中考数学全真模拟试卷含解析: 这是一份2022年浙江省绍兴县重点达标名校中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,四组数中,一、单选题,化简的结果是等内容,欢迎下载使用。

    2022年浙江省绍兴市暨阳重点中学中考数学全真模拟试题含解析: 这是一份2022年浙江省绍兴市暨阳重点中学中考数学全真模拟试题含解析,共21页。试卷主要包含了如图,两个反比例函数y1=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map